
On-the-Fly TCP Acceleration with Miniproxy ∗

Giuseppe Siracusano
Univ. of Rome Tor Vergata/
NEC Laboratories Europe,

Germany

Roberto Bifulco
NEC Laboratories Europe,

Germany

Simon Kuenzer
NEC Laboratories Europe,

Germany

Stefano Salsano
Univ. of Rome Tor Vergata/

CNIT, Italy

Nicola Blefari Melazzi
Univ. of Rome Tor Vergata/

CNIT, Italy

Felipe Huici
NEC Laboratories Europe,

Germany

ABSTRACT
TCP proxies are basic building blocks for many advanced
middleboxes. In this paper we present Miniproxy, a TCP
proxy built on top of a specialized minimalistic cloud operat-
ing system. Miniproxy’s connection handling performance
is comparable to that of full-fledged GNU/Linux TCP proxy
implementations, but its minimalistic footprint enables new
use cases. Specifically, Miniproxy requires as little as 6 MB
to run and boots in tens of milliseconds, enabling massive
consolidation, on-the-fly instantiation and edge cloud comput-
ing scenarios. We demonstrate the benefits of Miniproxy by
implementing and evaluating a TCP acceleration use case.

CCS Concepts
•Networks→Middle boxes / network appliances; Trans-
port protocols; Network experimentation;

Keywords
Middleboxes, TCP proxy, TCP Acceleration, HTTP proxy,
Early SYN Forwarding, Unikernels.

1. INTRODUCTION
Service access times are directly correlated to users’ expe-

rience and thus to service providers’ revenues [18]. Amazon
estimates that an increase of delay of 100ms cuts its revenue
by 1% [7]. Google measured a 0.74% drop in the number
of web searches performed by users when the search service
delay was artificially increased by 400ms [27]. Similarly,
Bing experienced a reduction of 1.2% in per-user revenue
∗This work was partly funded by the EU in the context of the
SUPERFLUIDITY project (5G PPP).

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

HotMiddlebox, August 22–26, 2016, Florianopolis, Brazil
c© 2016 ACM. ISBN 978-1-4503-4424-1/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2940147.2940149

when the service delay was increased by 500ms [20]. Given
the drastic impact that a few additional milliseconds can have,
network performance constitutes a critical element for many
Internet services.

In today’s networks, latency is dominated by two compo-
nents: round-trip time (RTT) between the communication’s
end-points and the number of RTTs required to complete the
transfer [7]. The RTT is determined by delay in the physical
infrastructure, routing and queuing. In this work, we focus
on reducing the number of RTTs required to complete a data
transfer. In the case of TCP, optimizations have targeted most
of the protocol mechanisms including connection establish-
ment [17, 9], slow start [2] and congestion avoidance [7].
However, since parts of TCP are fundamental to its correct op-
eration, the optimization space is constrained or may require
extensive changes to the network infrastructure and protocol
stack [3, 27], making deployment harder.

A complementary approach to TCP optimization is the
deployment of TCP proxies within the path of an end-to-end
connection [11]. A TCP proxy splits a single TCP connection
into two connections and, if located in the middle (delay-wise)
of the original connection’s path, can noticeably speed up end-
to-end communication by reducing the feedback-loop time
of each TCP connection [9]. However, implementations of
this optimization technique have been deployed only in cases
in which the requirement for the optimization was known
and well established in advance, as is the case for content
distribution networks (CDNs) [1, 16]. Dynamic, on-the-fly
deployments of TCP proxies for connection acceleration have
only been explored, so far, as a service provided by “en-
hanced” routers [9]. Unfortunately, the deployment of such a
solution is difficult, as it requires modification to the routers,
and impractical, since it assumes that network flows do not
undergo path changes due to routing throughout the lifetime
of a flow.

Despite this state of affairs, recent trends are transforming
the network into a cloud infrastructure that allows for running
a variety of services in a number of different locations [14];
these provide new opportunities for on-the-fly deployment
of proxies for TCP acceleration, at the right places in the
network and in a timely fashion. To leverage these flexible
cloud infrastructures, TCP proxies need to be virtualized,

44

http://dx.doi.org/10.1145/2940147.2940149

(a) 3-way handshake (b) 3-way handshake and Proxy (c) Early SYN Forwarding
Figure 1: 3-way handshake, 3-way handshake and Proxy, Early SYN Forwarding

while still offering good performance and scalability.
In this paper we present Miniproxy, a lightweight, virtual-

ized TCP proxy that can support scenarios such as on-the-fly
TCP acceleration. Miniproxy is a Xen unikernel [23], is as
fast as state-of-the-art GNU/Linux-based proxies, requires
only 6 MB of RAM to run and can boot in just 12ms. Us-
ing it as a building block, we demonstrate that it is indeed
possible to accelerate a TCP connection by deploying one
or more proxies on an end-to-end path, even when place-
ment of the proxies requires some deviation from the shortest
path. Thanks to its small boot times, Miniproxy allows for
the creation of chains of TCP proxies just-in-time, by boot-
ing instances at locations in the network convenient for TCP
acceleration.

2. BACKGROUND & RELATED WORK
This section briefly introduces the technique we leverage

to accelerate TCP connections, sometime called Split TCP,
and presents related work.

2.1 TCP acceleration
In general, a TCP connection comprises three phases: con-

nection establishment (3-way handshake), slow start and con-
gestion avoidance. After connection establishment, through-
put increases exponentially during the slow start phase until
it reaches a threshold, after which the congestion avoidance
phase starts. For short flows, a TCP connection may terminate
before reaching such threshold, which is the case for the large
majority (about 90%) of flows [2]; as a result, we mainly
focus on optimizing the first two phases. In [19] we provide
the analytic modeling of the TCP connection establishment
time with the detailed analysis of the savings that are obtained
with the considered TCP acceleration techniques.

Connection Establishment. For short flows, the 3-way
handshake (see figure 1a) may constitute a significant part
of the overall TCP flow’s Time To Complete (TTC), i.e., the
time it takes to open a connection, transfer all the data and
close it. Consequently, the Time To First Byte (TTFB) of a
TCP connection, i.e., the time the client waits for receiving
the first data packet from the server, requires at least 2 RTTs.

Assume now a scenario with a TCP proxy. The client to
server connection establishment requires now two different
3-way handshakes (see figure 1b). Usually, the two 3-way

handshakes are executed in sequence: the first one happens
between the client and the proxy, and only after that the
second one, between the proxy and the server, takes place.

Adopting the technique proposed in [9], TCP proxies can
speedup the connection establishment. In this approach, the
client’s TCP SYN packet is forwarded to the next TCP hop
as soon as it is received by a proxy (see figure 1c). We refer
to this mechanism as Early SYN Forwarding (ESF). With
ESF, the two 3-way handshakes are partially executed in
parallel, reducing the overall connection establishment time
and TTFB.

Slow start The duration of the slow start phase is directly
proportional to the RTT. Introducing a proxy in the path splits
the TCP connection in two. In each of the split connections,
the slow start phase starts when the first data segment is
received. The data segment is immediately forwarded down-
stream so that the slow start phases in each part proceed in
parallel. Thus, the proxy effectively accelerates the TCP slow
start phase. For instance, if the proxy splits the end-to-end
delay in even parts, the duration of the slow start phase is
halved.

2.2 Related work
Our work follows the trend of using specialized VMs, also

known as unikernels [23, 15, 6, 8, 12], for creating virtualized
network functions. As opposed to previous work, we focus on
transparently accelerating TCP connections and instantiating
such servers on-the-fly. More recently, Jitsu [13] and the
work in [21] proposed the instantiation of VMs on-demand;
we leverage similar mechanisms to show that (virtual) TCP
proxies can be instantiated just-in-time in order to improve
the performance of TCP flows.

Our work is also related to the vast literature regarding TCP
acceleration. Specifically, we leverage the results of [9] and
[11] to perform TCP acceleration, though we use a novel TCP
proxy implementation, which can be dynamically deployed
in virtualized network infrastructures.

The work in [17] and [2] optimizes the TCP connection
establishment and slow start phases and so its results are
complementary to ours. In particular, one of the additions of
TCP Fast Open [17] is the possibility for end-hosts to include
some data in a TCP SYN packet. The data can be used to infer
the final destination of a proxied connection, when the proxy
is explicitly addressed. We developed a new TCP option to

45

carry the final destination of a proxied connection, in order
to allow proxies to use ESF (§4). However, our mechanisms
work for both new and re-established connections, while TCP
Fast Open can be used only with the latter.

In [16] TCP proxies are deployed in fixed locations to
reduce the connection time; instead, we make the case for
dynamically-placed proxies.

Another common use of Split TCP is to isolate lossy links
[5, 10, 4]. We do not cover these aspects in this paper, how-
ever, the observations made in these related works can be
leveraged and applied also to our case, if lossy links are com-
prised in the end-to-end path.

3. SYSTEM OVERVIEW
In this section, we present an overview of a system that

leverages Miniproxy to provide on-the-fly TCP acceleration.
Although this paper is mainly focused on the implementation
of the Miniproxy itself, we believe a description of one of
its applications will provide a clearer understanding of the
advantages of the proposed technology.

The aim of the envisioned system is to accelerate an end-
to-end TCP connection by deploying a chain of TCP proxies.
For such an objective, it is critical to properly locate the
proxies. In fact, split TCP achieves best performance when
minimizing the overall end-to-end RTT (i.e., the sum of the
individual connections’ RTTs) with an even distribution of the
connections’ RTTs. However, the best locations are strictly
dependent on the actual end-points’ relative locations. That
is, each end-to-end connection has its own best proxies’ loca-
tions. Furthermore, for any given couple of end-points, those
locations may need to be changed over time because of the
changing traffic conditions. In the light of these consider-
ations, it seems evident that a network provider is the best
suited actor to provide such a service. However, given that the
TCP flows being more suitable for acceleration are those that
experience large RTTs, it is neat to assume that the proxies’
locations may be distributed among several network providers.
Hence it is difficult to deploy this acceleration technique as
a network infrastructure service [9], since it would require
extended coordination between different network providers.

Luckily, today’s Internet offers a set of locations for flexibly
deploying TCP proxies: publicly available cloud datacenters.
Providers such as Amazon, Microsoft and Google are just the
most well-known ones, but a number of national and regional
providers can be easily added to the list. Using the cloud to
run proxies does not just solve the locations issue, but actually
includes a new variable in the picture. Cloud providers offer
a flexible utility-based approach to run VMs, with a fine-
grained billing model (sometimes taking into account the
per-minute activity of each VM’s cpu). Clearly, such a cost
model strongly calls for a system that is able to run a VM only
for the required amount of time, when it is actually required.

Requirements. Achieving such objectives hinges on ful-
filling a number of requirements. First, we would like to
leverage the availability of cloud deployments and virtualized
infrastructure in order to ease deployment and obtain the best
acceleration performance out of our proxies; consequently,

the proxies should be virtualized in order to run over such
platforms. Second, using cloud deployments requires mini-
mizing the time each proxy (i.e., VM) runs, in order to lower
the costs of running such instances when employing a util-
ity cost model. For example, this suggests that proactively
deploying the proxies may not be an optimal solution from
a cost perspective. Furthermore, for new TCP connections,
at least one of the TCP connection’s end-points is unknown
before the connection is initiated; thus, it is not possible to
know, in advance, the best locations for the proxies. Since
our gains can only come from the connection establishment
and slow start phases, a third crucial requirement is to be able
to place the proxies at their optimal locations in very short
timescales. Fourth, each pair of end-points may potentially re-
quire different proxy locations and those locations can change
over time due to varying network conditions; this may require
running many proxies at many locations, flexibly scaling their
numbers, to optimally accelerate a set of connections. Finally,
a big number of proxies means that proxy instances should be
as lightweight as possible to reduce the cost of running them
and to achieve fine-grained scalability of the system.

Building blocks. The implementation of a system that ful-
fills the above requirements is technically challenging and
requires a number of building blocks. For instance, a building
block is a monitoring system that checks the network condi-
tions between the suitable locations; the collected information
would be then required by another building block, e.g., an
orchestration system, which uses this information to select
the best locations to run the proxies. A system that manages
and timely creates the proxies is also required, as well as
efficient mechanisms to chain together several proxies.

This list could be actually much longer, and it is out of the
scope of this work to describe a full-fledged solution. Instead,
in the next section we focus on the basic building block for
such a system, i.e., a virtualized TCP proxy.

4. MINIPROXY IMPLEMENTATION
Given the above requirements, we would like to leverage

the nice properties of VMs such as isolation but without incur-
ring their overheads. To do so, we settle on unikernels [23]:
purpose-built, specialized VMs based on minimalistic OSes.
Unikernels have a number of advantages including a single
address space, so no expensive system calls; low memory
footprint (MBs or even KBs) and fast instantiation times (mil-
liseconds compared to seconds for conventional VMs). These
properties are important since they let us instantiate our TCP
proxies on demand, and potentially a large number of them
on the same box.

In particular, we target unikernels on Xen, and use the
paravirtualized MiniOS [24] operating system to build on
(see figure 2). To implement Miniproxy, we make a number
of modifications to lwip (a small, open source TCP/IP stack
for embedded systems) to handle the actual TCP connections,
and develop a MiniOS-based proxy application from scratch
that leverages these modifications. We further make use of
the optimizations to Xen and MiniOS described in [14] in
order to derive even smaller boot times.

46

Figure 2: Miniproxy architecture showing modified and
new components.

In greater detail, we modify lwip to model a TCP proxy
as pairs of sockets, one for the connection between the client
(or previous hop) and the proxy and one for the connection be-
tween the proxy and the server (or next hop). In other words,
the first socket is used to receive incoming connections while
the second one is used to open a connection towards the server
(or the next hop). To implement this in lwip, we linked to-
gether two PCBs (Protocol Control Block) structures. Our
API allows us to instantiate a PCB pair through a new bind
function called tcp_early_syn_bind(). When a PCB
pair is instantiated, each PCB plays a specific role: one listens
for incoming connections, while the other one is ready to
forward the SYN packet (outgoing_idle state). Each of
the PCBs performs a separate three-way connection estab-
lishment process and invokes an application callback when
done. The listening PCB hands over information about the
connection with the endpoint that has started the communica-
tion; likewise, the outgoing_idle PCB includes state to
support communication with the target endpoint.

In addition to this change, we added a new callback to
lwip that is invoked when the SYN is received, allowing
applications to instantiate data structures and take decisions
about the next hop, if needed. We further increase the TCP
IW to 10 segments, the same value used by the majority of
the TCP implementations. We set the TCP send buffer size,
configurable by the user, to double the TCP receive window,
as this resulted in the best performance in our experimental
tests.

The other major change to lwip has to do with the intro-
duction of a new TCP option that allows us to chain together
a set of explicit proxies. Briefly, there are two ways to send
traffic through proxies: implicit (or transparent) [9] and ex-
plicit [11]. In the implicit case the flow’s destination can
be inferred from packet headers, i.e., destination IP address
and TCP port, which means that the proxy must be on the
path between the client and the packet’s IP destination. The
advantage is that all the information to identify the final end-
point of the TCP connection is in the packet’s header. In the
explicit case, instead, the IP destination of the TCP connec-
tion is the proxy itself, meaning that the proxy has to read
the TCP flow’s data to learn the final destination of the con-
nection. For example, when using HTTP proxies, the HTTP
header includes the destination server in the URI. Unfortu-
nately, while explicit proxies can be deployed anywhere, they

do not allow for ESF, since they need to complete the first
3-way handshake to read the TCP flow’s data. To overcome
this limitation, we introduce a new TCP option that carries in-
formation about the source/destination IP addresses and TCP
ports inside a SYN packet. The use of this option extends the
support for ESF also to explicit proxies.

The TCP option can be introduced directly by the client
or by an implicit proxy which is on-path and can redirect
the connection to an explicit proxy. Note that at least one
implicit proxy on the path is already commonly deployed,
e.g., in cellular networks [22, 26]. In this case, the first proxy
(likely close to the client), will perform a traditional 3-way
handshake, while all the remaining proxies in the chain, if
supporting the newly introduced TCP option, can use ESF.
Miniproxy supports the new TCP Option, which contains the
4-tuple IP source/destination address and TCP source/desti-
nation port.

The implementation of the actual proxy application running
on top of MiniOS and our modified lwip stack consists
of 600 LoC, is event-driven, requires a minimum of 6MB
of RAM, and does not need any block devices. Besides
performing the TCP acceleration already described, the proxy
is also able to parse the new TCP option and apply per-flow
policies. Finally, it is worth pointing out that in the current
state Miniproxy performs only TCP proxying, but it has been
designed for extensibility in order to eventually introduce
additional functions, e.g., caching.

5. EVALUATION
In this section we present a preliminary performance eval-

uation of our Miniproxy implementation. We first perform
micro-benchmarks of Miniproxy’s (1) throughput, (2) con-
nection establishment time and (3) boot times, followed by
an evaluation of how applying ESF and a chain of proxies
affects TCP performance. Each measurement presented in
this section is the average across several runs (100). Confi-
dence intervals are not plotted since they are very close to the
average.

5.1 Micro-benchmarks
Unless otherwise stated, all tests in this section were run on

a server with an Intel Xeon CPU @3.4GHz, 16GB of RAM
and a dual port Intel x540 10Gb NIC on Xen 4.4. The server
is connected back-to-back to a traffic generator server. Traffic
is generated there, forwarded by the box running Miniproxy
and sent back to the generator server, which then measures
throughput.
Throughput: For the first experiment, we measured the
throughput achieved by Miniproxy and compared it to the one
achieved by Varnish, a state-of-the-art TCP proxy implemen-
tation for GNU/Linux. In this test Miniproxy is configured to
run with 8 MB of RAM, while Varnish requires 1 GB. Both
proxies run on a VM to which we dedicate a single CPU core,
and we instrument the generator to send a single TCP flow.
With this setup, Miniproxy consistently outperforms Varnish
in terms of throughput by about 5% (1.534 Gb/s versus 1.462
Gb/s for Varnish) while consuming significantly less mem-
ory. It is worth noting that the results were without Generic

47

Concurrent Conn. 30 70 110 150 190 230
Avg. time (ms) 0,1 1 2 2 3 3

Table 1: Connection establishment time

Figure 3: Miniproxy boot times for different CPU fre-
quencies.

Segmentation Offload (GSO [25]): we have already added
GSO support to lwip and early numbers, without using the
proxy code, are encouraging (in the range of 32 Gb/s). We
are now in the process of modifying our proxy application to
take advantage of GSO.
Connection Establishment: We measure Miniproxy’s con-
nection establishment time when varying the number of si-
multaneous connections (see table 1). Our test shows that
Miniproxy is able to handle an increasing number of simul-
taneous connections without overly increasing the per-flow
connection establishment time (in the worst case we measure
a 3ms establishment time when handling 230 simultaneous
connection requests).
Instantiation Time: Finally, we measured the boot time of a
Miniproxy instance when varying both the amount of RAM
allocated to the VM and the CPU frequency. In this test,
the RAM size directly impacts the number of simultaneous
flows the proxy can handle. The evaluation for different
CPU frequencies, instead, is useful in order to show that
Miniproxy can run on devices with different capabilities, e.g.,
Miniproxy could be deployed on home gateways at the edge
of the network or on big servers in cloud datacenters. Figure
3 shows the results. Miniproxy requires a minimum of 6 MB
to boot, in which case the instance boots in just 12ms for CPU
frequencies above 2GHz. For a CPU frequency of 0.8GHz
(the minimum our system allows), Miniproxy is still able to
boot in just 30ms. For bigger RAM amounts, the boot times
go up to 60ms on a 3GHz CPU and 230ms on a 0.8GHz CPU.

5.2 TCP Acceleration with ESF
Having shown that Miniproxy can meet the requirements

mentioned in section 3, we now perform a number of tests
to verify to which extent we can use it to accelerate TCP
connections. In these experiments we assume a RTT of 100ms
between client and server [2], a link bandwidth of 100Mb/s
and that the proxies apply ESF and evenly split the end-to-end

Figure 4: Transfer time when varying the number of
proxies for different transfer sizes.

Figure 5: Transfer time with one proxy for different
transfer sizes. The proxy introduces additional delay on
the client-proxy and proxy-server links.

RTT. The delays are generated synthetically using the Linux
Network Emulation (netem) tool.

Figure 4 shows the Time To Complete (TTC) for differ-
ent flow sizes (from 10 KBs to 500 KBs) using a variable
number of proxies. For TCP flows of 10 KBs we have
TTC = TTFB, in fact the initial congestion window of
typical today’s TCP is 10 segments (about 15KBs). Hence,
for the flows transferring only 10KBs we are only measuring
the effect of ESF. The ESF mechanism yields a TTFB reduc-
tion of 25%, 33.3% and 37.5% when using 1, 2 and 3 proxies,
respectively. For flows that need more than 2 RTTs to com-
plete, we can also see the effects of a faster slow start phase
due to the shorter RTT. With respect to the TTC achieved
without a proxy, the TTC for 25KB flows is improved by an
additional 8%, 10% and 11,5% due to the increased through-
put in the slow start phase. In total, we measured a reduction
of 33%, 44% and 49% in TTC when using 1, 2 and 3 prox-
ies, respectively. Of course, the longer the duration of the
slow start phase, the better the measured acceleration. These
results matches the analytical model discussed in [19].

An interesting case is when a proxy is located off-path,
which introduces additional delay. To quantify this, we per-

48

form a test with an RTT of 100 ms (the one way delay is
50ms) and start from the ideal case of an on-path proxy that
splits the one way delay in two segments of 25ms each. We
then increase the delay on both links from 25 to 37.5ms (in
steps of 2.5ms). The introduction of a proxy that splits the
connection but increases the end-to-end delay can produce
different results. For small increases in the delay, there is
still an advantage in the split. However, when the increase is
large enough, the TTC may increase to the point of making
disadvantageous the use of the proxy. Figure 5 illustrates the
effect of the longer delays. It shows that even an increase
of 50ms in the overall RTT still produces a reduction of the
TTC, when compared to the case with no proxies (for flows
that require at least 2 RTTs to complete).

6. CONCLUSION
We presented Miniproxy, a lightweight TCP proxy that can

boot in 12ms, while providing high forwarding performance.
We showed that Miniproxy can be used to accelerate TCP’s
connection establishment and slow start phases. Miniproxy’s
very short boot times enable us to even boot the proxy in-
stances on-the-fly, as the SYN packet of a TCP connection is
first received.

Miniproxy is so far a simple proof-of-concept. Going for-
ward, we intend to develop strategies for optimally selecting
where to boot Miniproxy instances given a flow’s endpoints
and a set of available deployment locations. Further, we are
also extending our evaluation to include wide area experi-
ments, taking into account different traffic conditions and
evaluating the suitability of available cloud datacenters (e.g.,
Amazon’s EC2) as Miniproxy execution environments.

7. REFERENCES
[1] Akamai. Akamai’s state of the internet: Q1 2015 report.
[2] M. Al-Fares et al. Overclocking the yahoo!: Cdn for faster

web page loads. In Proceedings of the 2011 ACM SIGCOMM
Conference on Internet Measurement Conference, IMC ’11,
pages 569–584, New York, NY, USA, 2011. ACM.

[3] M. Alizadeh et al. Data center tcp (dctcp). In Proceedings of
the ACM SIGCOMM 2010 Conference, SIGCOMM ’10, pages
63–74, New York, NY, USA, 2010. ACM.

[4] A. Bakre et al. I-tcp: Indirect tcp for mobile hosts. In
Proceedings of the 15th International Conference on
Distributed Computing Systems, ICDCS ’95, pages 136–,
Washington, DC, USA, 1995. IEEE Computer Society.

[5] H. Balakrishnan et al. A comparison of mechanisms for
improving tcp performance over wireless links. IEEE/ACM
Trans. Netw., 5(6):756–769, Dec. 1997.

[6] Erlang on Xen. Erlang on Xen. http://erlangonxen.org/, July
2012.

[7] T. Flach et al. Reducing web latency: The virtue of gentle
aggression. In Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM, SIGCOMM ’13, pages 159–170,
New York, NY, USA, 2013. ACM.

[8] A. Kivity et al. Osv—optimizing the operating system for
virtual machines. In 2014 USENIX Annual Technical
Conference (USENIX ATC 14), Philadelphia, PA, June 2014.
USENIX Association.

[9] S. Ladiwala et al. Transparent tcp acceleration. Comput.
Commun., 32(4):691–702, Mar. 2009.

[10] F. Le et al. Experiences deploying a transparent split tcp
middlebox and the implications for nfv. In Proceedings of the
2015 ACM SIGCOMM Workshop on Hot Topics in
Middleboxes and Network Function Virtualization,
HotMiddlebox ’15, pages 31–36, New York, NY, USA, 2015.
ACM.

[11] Y. Liu, Y. Gu, H. Zhang, W. Gong, and D. Towsley.
Application level relay for high-bandwidth data transport.
Proc. of GridNets, 2004.

[12] A. Madhavapeddy et al. Unikernels: library operating systems
for the cloud. In Proceedings of the eighteenth international
conference on Architectural support for programming
languages and operating systems, ASPLOS ’13, pages
461–472, New York, NY, USA, 2013. ACM.

[13] A. Madhavapeddy et al. Jitsu: Just-In-Time Summoning of
Unikernels. In NSDI, 2015.

[14] F. Manco, J. Martins, K. Yasukata, J. Mendes, S. Kuenzer, and
F. Huici. The case for the superfluid cloud. In Proceedings of
the 7th USENIX Conference on Hot Topics in Cloud
Computing, HotCloud’15, pages 7–7, Berkeley, CA, USA,
2015. USENIX Association.

[15] J. Martins, M. Ahmed, C. Raiciu, and F. e. Huici. Enabling
fast, dynamic network processing with clickos. In Proceedings
of the second ACM SIGCOMM workshop on Hot topics in s
oftware defined networking, HotSDN ’13, pages 67–72, New
York, NY, USA, 2013. ACM.

[16] A. Pathak et al. Measuring and evaluating tcp splitting for
cloud services. In Proceedings of the 11th International
Conference on Passive and Active Measurement, PAM’10,
pages 41–50, Berlin, Heidelberg, 2010. Springer-Verlag.

[17] S. Radhakrishnan et al. Tcp fast open. In Proceedings of the
Seventh COnference on Emerging Networking EXperiments
and Technologies, CoNEXT ’11, pages 21:1–21:12, New
York, NY, USA, 2011. ACM.

[18] A. Singla et al. The internet at the speed of light. In
Proceedings of the 13th ACM Workshop on Hot Topics in
Networks, page 1. ACM, 2014.

[19] G. Siracusano, R. Bifulco, S. Kuenzer, S. Salsano, N. B.
Melazzi, and F. Huici. On-the-fly tcp acceleration with
miniproxy (extended version).
http://arxiv.org/abs/1605.06285.

[20] S. Souders. Velocity and the bottom line.
http://radar.oreilly.com/2009/07/velocity-making-your-site-
fast.html.

[21] R. Stoenescu et al. In-net: In-network processing for the
masses. In Proceedings of the European conference on
Computer systems, EuroSys ’15. ACM, 2015.

[22] Z. Wang et al. An untold story of middleboxes in cellular
networks. In Proceedings of the ACM SIGCOMM 2011
Conference, SIGCOMM ’11, pages 374–385, New York, NY,
USA, 2011. ACM.

[23] Xen Project. The Next Generation Cloud: The Rise of the
Unikernel. http://wiki.xenproject.org/mediawiki/images/3/
34/XenProject_Unikernel_Whitepaper_2015_FINAL.pdf,
April 2015.

[24] Xen.org. Mini-OS. http://wiki.xen.org/wiki/Mini-OS, 2015.
[25] H. Xu. Gso: Generic segmentation offload.

https://lwn.net/Articles/188489/, 2006.
[26] X. Xu et al. Investigating Transparent Web Proxies in Cellular

Networks. In PAM. Springer, 2015.
[27] W. Zhou et al. Asap: A low-latency transport layer. In

Proceedings of the Seventh COnference on Emerging
Networking EXperiments and Technologies, CoNEXT ’11,
pages 20:1–20:12, New York, NY, USA, 2011. ACM.

49

http://erlangonxen.org/
http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html
http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html
http://wiki.xenproject.org/mediawiki/images/3/34/XenProject_Unikernel_Whitepaper_2015_FINAL.pdf
http://wiki.xenproject.org/mediawiki/images/3/34/XenProject_Unikernel_Whitepaper_2015_FINAL.pdf
http://wiki.xen.org/wiki/Mini-OS
https://lwn.net/Articles/188489/

	Introduction
	Background & Related Work
	TCP acceleration
	Related work

	System overview
	Miniproxy Implementation
	Evaluation
	Micro-benchmarks
	TCP Acceleration with ESF

	Conclusion
	References

