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Abstract—The success of the Cloud Computing paradigm
may be jeopardized by concerns about the risk of misuse of
this model aimed at conducting illegal activities. In this paper
we address the issue of detecting Denial of Service attacks
performed by means of resources acquired on-demand on a
Cloud Computing platform. To this purpose, we propose to
investigate the consequences of the use of a distributed strategy
to detect and block attacks, or other malicious activities,
originated by misbehaving customers of a Cloud Computing
provider. In order to check the viability of our approach,
we also evaluate the impact on performance of our proposed
solution. This paper presents the installation and deployment
experience of a distributed defence strategy and illustrates the
preliminary results of the performance evaluation.

Keywords-Cloud Computing; Intrusion Detection; Perfor-
mance Evaluation; Virtualization

I. INTRODUCTION

Cloud Computing is undergoing an indisputable success,
which could be indeed jeopardized by concerns about the
risks related to potential misuse of this model aimed at
conducting illegal activities. In fact, the cheap availability
of significant amounts of computational resources can be
regarded as a means for easily perpetrating distributed
attacks, as it has recently been observed in several security
incidents involving Amazon’s EC2 cloud infrastructure [1].
The sheer power of attacks from EC2 is indeed raising
serious concerns in the community of system administrators
and security experts [2]. Furthermore, evidences in recent
research works have shown how it is possible to exploit
some properties and features of a common cloud computing
infrastructure in order to perform attacks against competitors
in an industrial scenario [3].

In this paper we address the issue of detecting Denial of
Service attacks targeting SIP-based systems; more in detail,
we will address the issue of detecting SIP (Session Initiation
Protocol) flooding attack instances targeting services hosted
within a cloud. To this purpose, we study the impact of
security tools deployment in different locations of the cloud,
trying to expose the peculiarities of their employment in
a cloud infrastructure. In particular, we will evaluate the
discrepancies in management cost overhead, due to the em-
ployment of one among the possible deployment strategies
for the selected security tools. We investigate the usage
of both centralized and distributed strategies to detect and

block attacks, or other malicious activities, originated by
misbehaving customers of a Cloud Computing provider or
by external nodes attacking cloud machines and services.

Among the fundamental tools for defending computa-
tional and networking infrastructures from malicious be-
havior are Intrusion Detection Systems (IDS). In classical
enterprise settings, an IDS is normally deployed on ded-
icated hardware at the edge of the defended networking
infrastructure, in order to protect it from external attacks.
In a cloud computing environment, where computing and
communication resources are shared among several users
on an on-demand, pay-per-use basis, such strategy is not
effective: attacks may be originated within the infrastructure
itself, since it can include several administrative domains
from the content provisioning point of view, and also be
directed against resources located within the cloud infras-
tructure itself. Hence, a proper defense strategy needs to be
distributed. In this paper, we propose to deploy lightweight
Network IDSs in each physical machine hosting customers’
virtual machines.

This paper is structured as follows: in section II we
describe the motivation of this work and general concepts
regarding cloud computing, in section III we describe in
further details Eucalyptus, a popular open source framework
for cloud computing, in section IV we discuss the security
tools used in this work and the proposed security system
architecture, whereas in section V an experimental evalua-
tion is sketched. Finally, section VI summarizes the paper’s
conclusions.

II. CLOUD COMPUTING

Cloud Computing is an innovative computing model in
which resources are provided as a service over the Internet,
on an as-needed basis, relieving users from the responsibility
of buying and managing a dedicated complex computing
infrastructure. Cloud providers, on the other hand, can
take advantage of scale economies in the organization and
management of big datacenters, whose ICT resources can
be efficiently exploited by partitioning and renting them to
a high number of customers. Despite its success, the Cloud
Computing paradigm poses new challenges in terms of secu-
rity of the computing infrastructure: cloud providers have the
responsibility to manage a large infrastructure that hosts a
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number of highly dynamic virtual infrastructures operated by
different users. Technologies like system virtualization have
become for the first time widely adopted to offer computing
resources as a service, allowing the dynamic spawn of virtual
machines in the datacenter’s networking infrastructure.

A. Security Issues

Resource rental on a per-usage basis shifts the respon-
sibility of system management and administration towards
specialized teams of experts, virtually reducing security risks
typically due to system misconfiguration, lack of proper up-
dates, or unwise user behavior. Despite that, the cloud com-
puting paradigm introduces novel risks due to its inherent re-
source sharing requirement. Peculiar vulnerabilities, indeed,
are introduced by the employment of virtualized host ma-
chines sharing common physical resources, by the availabil-
ity of cheap large scale computation/communication/storage
facilities and by the dynamicity of the cloud computing en-
vironment. Furthermore, misconfigured remote data storage
can expose users’ private data and information to unwanted
access, or privacy infringement. Each of the security risks
enumerated before needs to be dealt with by using a specific
technique, trying to respond to the manifold known threats,
as well as to the novel challenges which will emerge in the
future. That is why an integrated approach, taking different
aspects of security-related issues into account, is necessary
in order to protect user data and preventing malicious actions
both targeting cloud users and originating from within the
cloud from being performed.

In the following, we will describe the Eucalyptus cloud
computing architecture, trying to expose the security risks
related to its employment. The deployment of an intrusion
detection system in such a scenario will be described in
details, and the resulting performance and computational
overhead will be evaluated experimentally.

III. THE EUCALYPTUS CLOUD COMPUTING SYSTEM

Eucalyptus [4] is an open-source framework for cloud
computing that implements the paradigm commonly referred
to as Infrastructure as a Service (IaaS) [5]. Eucalyptus has
been designed to be interface-compatible with one of the
most popular commercial cloud service, namely Amazon
EC2 [6]. The system is based on three components, each
with a well defined Web-service interface. The software
architecture has been organized according to a three-level
hierarchy. The bottom layer consists of Node Controllers
(NC), responsible of managing virtual machines running on
top of a physical machine. The middle layer contains Cluster
Controllers (CC). Each CC manages a set of NCs residing
on the same physical subnet. The topmost layer is the Cloud
Manager (CM), that manages all the CCs and takes care of
high-level resource scheduling. The Cloud Manager is the
entry-point to the whole Eucalyptus system for end users
as well as administrators. To create instances (the name

given to virtual machines in the Eucalyptus and Amazon
EC2 terminology) Eucalyptus supports both KVM [7] and
Xen [8] virtualization technologies. In this work we will just
take Xen into account, since it is the reference technology
used also in Amazon EC2. Eucalyptus allows four different
networking configurations, but among others, that are mainly
targeted for testing environments or small installations, the
most interesting for our purposes is the ”Managed Mode”.
In managed mode Eucalyptus provides all the functionality
present in Amazon EC2, including istances’ subnetworks
isolation. Network isolation is obtained through the use of
VLANs [9], which impose appropriate configurations in data
center’s switches. Following the Eucalyptus terminology,
each instance’s network is referred to as a security group.
Each user is bound to at least one security group, but
association to multiple groups can be defined as well if
needed. When configuring Eucalyptus for managed mode,
the administrator must define an IP subnet entirely dedicated
to the cloud. Moreover, the administrator must define the
number of IP addresses available for each security group,
actually defining how subnetting is performed. To guarantee
access to external networks, each security group includes the
cluster controller among its hosts. Instances are configured
to use the CC as default gateway (Figure 1). The CC
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Figure 1. Eucalyptus managed mode networking: lv3 view

provides both DHCP and NAT services. NAT is realized
using standard GNU/Linux’s netfilter functionality. Features
like elastic IPs are provided by means of rules configured on
the CC’s configured as a NAT. Eucalyptus exploits software
bridges and Xen’s virtual Network Interface Cards (NIC)
to build virtual networks: when a security group is firstly
created, i.e. when the first instance of a security group
is allocated, Eucalyptus tags the physical NIC with the
security group’s VLAN tag and creates a software bridge
for each physical machine; the bridge is actually created in
the management virtual machine which starts at the boot of
a physical machine. Such machine is usually named Dom0
in Xen context. The tagging process creates an abstract NIC
to which tagged traffic is forwarded; such interface is then
attached to the software bridge. Since Xen creates a new
pair of “connected virtual ethernet interfaces”, with one end
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Figure 2. Eucalyptus managed mode networking: infrastructure view

of each pair in the virtual machine and the other end within
Dom0, each newly created instance’s virtual NIC that resides
in Dom0 is attached to the corresponding security group’s
bridge (Figure 2). Access to security groups is controlled
by the CC’s firewall. By default, a security group is not
accessible from external networks, and allowed traffic must
be specified in terms of source network/address and port
number through the Eucalyptus’ API. E.g., in order to host
a public web server in a security group, a rule to allow HTTP
traffic from any network must be specified and added to the
security group.

IV. DETECTING ATTACKS IN A CLOUD COMPUTING
SYSTEM

As stated earlier, cloud computing infrastructures have
recently been the subject of technical news reports about
severe attacks to several SIP-based communication infras-
tructures. What emerged by such reports about recent se-
curity incidents is the lack of a structured and well or-
ganized security system deployment in cloud computing
infrastructures. The aim of this paper is to present the
deployment experience of a production level, state of the art
solution for intrusion detection (Intrusion Detection System
- IDS). According to the analyzed data source, IDS can
be classified in network and host based. Network based
IDS analyze traffic flowing through a network segment, by
capturing packets in real time, and analyzing and checking
them against some “classification” criteria. IDS can be
further characterized with respect to the type of detection
mechanism implemented. Namely, IDS can explicitly model
attacks, anomalies and unwanted behavior, thus implement-
ing the misuse-based detection paradigm, or conversely

model normal and expected events, consequently detecting
as anomalous what doesn’t conform to such “normality”
model.

We have tried different deployment schemes, trying to
exploit the advantages of distributed systems, and the in-
herent characteristics of a cloud computing architecture. We
used a network based, signature based IDS. The employed
IDS is network based since we want to deal with network-
based attacks, and try to detect them by observing network,
transport and application layer activity of cloud customers
and external users. Furthermore, we use a signature based
IDS in order to show how the careful deployment of well
known, already available solutions could mitigate a severe
problem in such a distributed computing framework as
cloud computing. We will evaluate the tradeoffs between
computational overhead and granularity of analysis, in terms
of detection capabilities, percentage of total traffic analyzed,
and cpu and memory consumption, as well as packet loss.

A. Building the proposed architecture

In this paper we will address the problem of deploying
multiple instances of an IDS within a cloud computing
system, allowing to rely on multiple security observation
points. Eucalyptus, the cloud computing system used for the
implementation of the experimental scenario, is character-
ized by the presence of a frontend, which also operates as
a NAT, traversed by all traffic flowing to, and coming from,
virtual hosts inside the cloud. Therefore, it is reasonable to
think of an IDS installation which only relies on a single
IDS installed near the frontend. Such an IDS would be
able to see all the traffic related to virtual hosts hosted in
the cloud, and provide a very good point of observation.
The availability of such a large and significant amount of
data, indeed, is obtained at the cost of high computational
resources consumption. In fact, by forcing the analysis of
all traffic to be performed at a single point, the machine
physically hosting the IDS can be easily overloaded, losing
packets, and producing inaccurate detection results. On the
other hand, it is possible to deploy a network based IDS
close to each of the physical machines. This configuration
helps in reducing the load each IDS is subject to, thus
helping to overcome the issue of packet loss. In fact, even
though a virtual host can be subject to a Denial of Service
attack, IDS’s installed on other physical machines will not
be affected, therefore preserving their detection power intact.

1) Snort: The IDS we chose to deploy in the proposed
architecture is Snort [10]. Snort is a popular signature-based
network intrusion detection system, mainly implementing
the misuse based detection paradigm. Its modular archi-
tecture makes it easily extendable, and has fostered the
integration of anomaly based detection plugins as well. In
general, Snort’s behavior is determined by rules, describing
significant characteristics of events or specific attack sig-
natures. Snort rules are organized in several groups, trying
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to separate them both in terms of the targeted attack type
or application scenario. For the sake of efficiency, rules are
mainly structured in two parts: a header part, and a body
part. The rule header contains information about the type of
action to perform when the rule is matched. Such actions
include, but are not limited to, the possibility of generating
an alert. Furthermore, the header contains information about
source and destination IP addresses and ports, thus allowing
to apply each rule to restricted subsets of the analyzed
traffic flows. The rule body, instead, contains information
about the type of action to perform on packets in order
to check whether they match the rule; furthermore, it can
also contain byte sequences to check against the packet’s
payload. Typically, attack signatures are searched for in
the payload of packets, and rules matching the content of
such payloads are logged using one of the many available
logging facilities, alongside with information allowing the
identification of the traffic flow transporting attack-related
traffic.

In order to identify which rules have to be evaluated for
a packet, a fast multi-pattern search for the longest content
string of each rule of a packets port group is performed on
the packets payload. If this initial string matching algorithm
finds a potentially matching rule, other mandatory fields
of the rule (e.g., source and destination IP addresses) are
checked and, upon success, the optional conditions of that
rule are validated. This processing can include an expensive
pattern matching operation which uses all the keywords
of a rule and also validates their position. This two-phase
approach has the advantage that not all rules need to be fully
evaluated. Therefore, any deployment strategy allowing to
reduce the load of each instance of the IDS, yet preserving
the overall detection capabilities of the IDS ensemble, is
worth investigating, since it can allow for a more effective
detection of ongoing attacks.

V. EXPERIMENTAL EVALUATION

A. The reference testbed

In order to perform the experimental evaluation of the
proposed attack detection scenario, we installed a testbed,
depicted in figure 3 simulating the complete scenario for
effective detection of SIP flooding attacks targeting hosts
in a cloud computing environment. The testbed consists of
six physical machines, two of these host a total of eight
virtual machines, managed by Eucalyptus. The Eucalyptus
controller plays the role of both a NAT traversed by traffic
flowing to and from virtual hosts within the cloud, and
as a cloud management station, controlling virtual hosts
deployment and working as a concentration node for traffic
on the configured VLAN’s. In particular, in our experi-
ments, we used two VLAN’s, or in Eucalyptus’ jargon two
“security groups”. As depicted in figure 3, we deployed
two Asterisk [11] SIP servers, one for each security group,
several RTP-using agents, as well as several attack instances
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Figure 3. Experimental testbed - deployed services

generating SIP flooding traffic, implemented by using the
“inviteflood” [12] tool. The aforementioned machines and
services conveniently emulate the attack scenario, but are
not realistic enough in themselves. For this reason we
also deployed one Apache web server per security group,
stressed by the hammerhead web stresser. This was useful
for recreating a more realistic cloud scenario, where dif-
ferent services are likely to be hosted. In order to further
differentiate traffic properties, we also installed D-ITG [13]
as a background traffic generator. D-ITG inject traffic with
specific properties in communication channels between a
sender and multiple receivers; traffic can be of different
types, and several properties such as inter packet time and
packet size distribution can be configured. The implemented
cloud consists of a machine implementing the frontend, and
two physical machines implementing the physical nodes.
Each of the physical nodes hosts four virtual machines, each
hosting one testbed component, as represented in figure 4.

Cluster Controller

Node Node

web server (sg 1)

sip server (sg 0)

rtp agent (sg 0)

rtp agent (sg 1)

web server (sg 0)

sip server (sg 1)

rtp agent (sg 1)

rtp agent (sg 1)

Figure 4. Distribution of services in nodes

B. Experimental evaluation

In order to evaluate the dependency of IDS performance
on its position in the network, we imagined two different
test scenario. In the former, we installed the IDS close to
the Cloud Controller, thereby allowing it to sniff and analyze
all the traffic flowing to and coming from virtual hosts.
At the Cloud Controller’s side, VLAN tags are removed
by the virtual bridge, as discussed in previous sections.
Therefore, all traffic is visible and the correspondent VLAN
is indistinguishable. In the latter, instead, a Network IDS
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Figure 5. Attacked physical machine CPU load

Figure 6. Cluster Controller CPU load

has been installed close to each of the two physical ma-
chines. Since each physical cloud node can potentially host
virtual hosts belonging to different security groups, the IDS
has to perform VLAN tag stripping, before being able to
correctly analyze each packet. For each configuration, we
evaluated the detection capabilities of the IDS with respect
to the selected INVITE flooding attack. In both cases, the
IDS’s were able to correctly detect attack instances, issuing
alerts communicating the result of packet analysis. Yet, it
is interesting to point out how “expensive” such detection
process is, showing some interesting properties and giving
some insight. In particular, we observed CPU usage, in order
to show whether the system hosting the IDS still has some
resources to dedicate to detection during a flooding attack.
Such an evaluation is useful since modern attacks consist
very often in coordinated actions aimed at hitting big targets
and totally disrupting networks and services. Furthermore,
in the case of cloud computing, where the typical customer
can be a company outsourcing service hosting, unfair com-
petition between enterprises can become a good motivation
for perpetrating dramatically effective attack campaigns. The
first thing to point out in the tests’ result discussion is that
in both scenarios we were able to detect that a SIP flooding
attack was in act. We are confident that such a result is
caused by the relatively small impact of the attack itself,
which was indeed able to saturate the resources of the SIP

server, but not our cloud’s physical resources. In figure 5
we show the CPU load of the physical machine hosting the
virtual machine containing the SIP server under attack. The
graph clearly shows a significant increment in CPU usage
due to both the presence of the virtual machine and of the
administrative domain (Dom0). This remains true until the
Dom0 is able to perform both packet forwarding actions
(i.e. forwarding packets from the physical NIC to the virtual
machine’s virtual NIC) and packet analysis through the IDS.
When Dom0 reaches its physical performance limit, it is
no more able to forward packets to the attacked virtual
machine, and that’s why such machine’s CPU load decreases
significantly. Clearly, the shown Dom0 performance pattern
is caused by the absence of countermeasures subsequent to
attack detection. It is worth pointing out that during the
attack, other virtual machines running concurrently with the
attacked one underwent a performance degradation, because
of the Dom0’s overload. On the other hand, the second
physical machine was totally unaffected by the attack.
Looking at the second scenario, where the IDS is deployed
close to the Cluster Controller, we must take into account
that each performance degradation is reflected on the entire
cloud. Figure 6 shows the impact of running Snort co-located
with the Cluster Controller. The CPU “system-level” load is
caused by the packet forwarding activity, while the “user-
level” load is mainly caused by the IDS’s activity. During
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the attack the IDS uses a double amount of CPU time with
respect to the system’s CPU time, even though our attack
instance is not very powerful. Since an overloaded Cluster
Controller is a bottle-neck for the cluster, we should avoid to
add such big load on it. Even installing the IDS on a separate
machine next to the Cluster Controller would result in an
overloaded machine, since it should analyze all the traffic,
therefore being prevented from operating properly.

VI. RELATED WORKS AND CONCLUSION

The application of IDS in cloud systems is a new re-
search field that is gaining interest due the spread use of
cloud computing services and the increasing number of
both attacks targeting cloud services and originating from
inside a cloud computing infrastructure, exploiting it as an
infrastructure for deploying attacks. Due to the young age of
this research field there a few papers on the topic. Current
researches are mainly targeted at defining a new IDS model
that can take advantage from additional information provided
by the Cloud Infrastructure itself. In [14] an example of a
distributed IDS for cloud environments is presented. The
proposed IDS is designed to work in a Cloud system
providing services according to the Platform as a Service
paradigm, and is structured as an added service of the
cloud system’s infrastructure. Further works can be found
as applied at computational GRIDs. In these works the
reference system architecture is somewhat different from
Cloud, but there are also some similarities, and hence there
are solutions that could be applied in the cloud context as
well. E.g., in [15] a solution based on the analysis of data
gathered from traditional IDS and monitoring systems (e.g.
Snort) deployed in the GRID’s network is described.

In this paper we have shown the practical implementation
experience of different deployment strategies of a well
known IDS in a cloud computing system, in order to provide
a fast and cheap solution to the intrusion detection prob-
lem in cloud environments. Depending on the deployment
choice, several benefits and shortcomings have been pointed
out and discussed. A single IDS could be placed close
to the Cluster Controller, being able to monitor all traffic
flowing to and from the cloud computing infrastructure. In
this scenario, the single IDS is heavily overloaded, thus
allowing for coordinated attack actions to disrupt the IDS’s
functionality by means of specifically crafted traffic before
starting the real attack. On the other hand, by deploying
IDS’s next to the physical machines, each IDS would be
able to control a smaller portion of traffic, thus being hardly
overloaded. This deployment scenario needs a properly
designed correlation phase in order to gather meaningful
information from different security tools spread across the
monitored network, which will be the subject of future
work. The choice of the best deployment strategy, obviously,
depends on the characteristics of the application scenario,
and on the administrator’s and users’ requirements.
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