
Improving SDN with InSPired Switches

Roberto Bifulco†, Julien Boite‡, Mathieu Bouet‡, Fabian Schneider†
† NEC Laboratories Europe ‡ Thales Communications & Security

ABSTRACT
In SDN, complex protocol interactions that require forging network
packets are handled on the controller side. While this ensures flexi-
bility, both performance and scalability are impacted, introducing
serious concerns about the applicability of SDN at scale. To improve
on these issues, without infringing the SDN principles of control
and data planes separation, we propose an API for programming
the generation of packets in SDN switches. Our InSP API allows a
programmer to define in-switch packet generation operations, which
include the specification of triggering conditions, packet’s content
and forwarding actions. To validate our design, we implemented
the InSP API in an OpenFlow software switch and in a controller,
requiring only minor modifications. Finally, we demonstrate that
the application of the InSP API, for the implementation of a typi-
cal ARP-handling use case, is beneficial for the scalability of both
switches and controller.

CCS Concepts
•Networks → Programming interfaces; Bridges and switches;
Programmable networks; Packet-switching networks; Network
performance evaluation; Network manageability;

Keywords
Software-defined Networking; Programming abstractions; Open-
Flow

1. INTRODUCTION
The last few years have seen the establishment of SDN as a con-

crete approach to build better networks and to introduce innovation
in an ossified field [24], with a growing number of deployments
certifying this success [15]. Nonetheless, despite the good behind
the intuitions that led to the design of the SDN principles [9], the
SDN architecture and technologies are iteratively being updated to
address the issues that are highlighted by the production deploy-
ments [28]. On the one hand, the current generation of forwarding
devices, i.e., switches, is not ready to support the flexible switch’s
programming model introduced with SDN. Limited forwarding table

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SOSR ’16, March 14-15, 2016, Santa Clara, CA, USA
© 2016 ACM. ISBN 978-1-4503-4211-7/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2890955.2890962

space [16], slow forwarding policy updates [14], limited through-
put in control messages handling [25], and slow synchronization
between data and control planes [21] are just some of the issues
that are being addressed on the switch side. Likewise, a number of
problems are being addressed on the controller side, i.e., where the
network’s control plane is implemented. Controller scalability [8],
reliability [3], as well as fundamental questions about controller
placement [12, 13], network policy consistency [34] and network
view consistency [20] can be mentioned as relevant examples of
work dealing with the SDN’s control plane implementation.

Delegation of control.
A way to address some of the mentioned issues is to evolve the

SDN design, redrawing the line that separates controller’s functions
from switch’s functions [4, 25]. When looking at OpenFlow, one
of the most deployed SDN technologies, we can spot the evidence
of this design adaptation activity, observing the changes introduced
in the different versions of the OpenFlow specification. In Open-
Flow 1.0 [30], the switch was completely described by a single flow
table that contains Flow Table Entries (FTEs), which in turn were
composed of a match part and an action part. In this match/action
paradigm, the match clause defines the traffic to which the specified
action is applied, and any change for a flow’s action requires an
interaction with the controller. Thus, supporting, e.g., fast rerouting
of the flows when a link fails requires a round trip with the con-
troller, which usually corresponds to an unacceptable increase in
the reaction delay. Already in OpenFlow 1.1 [31], the specification
was enriched with the definition of group tables, i.e., an abstrac-
tion to program a flexible selection of the switch’s out port when
performing a forwarding action, without requiring interactions with
the controller. That is, the functions separation line was redrawn to
let the switch react autonomously (e.g., port selection) within the
boundaries put by the controller (e.g., in response to a given port
down event). In general, this kind of design decisions are discussed
in the context of delegation of control, and it should be clear that
they do not violate the SDN principle of data plane and control
plane separation. According to the SDN architecture [36] published
by the ONF, the SDN controller will take all the decisions required
to operate a network, and instruct the network elements, which in
turn execute the decisions of the SDN controller. However, the SDN
architecture also explicitly allows to delegate certain functionality
to the network element. Such a delegation of control functional-
ity, from the SDN controller to the SDN switch, is bound to the
constraints that the SDN controller can alter and/or revoke the del-
egated control functionality at any time. Moreover, it is expected
that enough information is fed back from the SDN switch to the
controller.

As in the case of the mentioned OpenFlow example, delegating

Figure 1: Design space for delegation of control to SDN
switches

functions to the SDN switch may have several benefits, such as (i) re-
ducing the processing load at the SDN controller, (ii) reducing the
control loop delay (SDN switch↔ SDN controller), (iii) reducing
the load on the control channel/network. However, there is a fairly
broad design space for the delegation of functionality to the SDN
switch. We illustrated this in Figure 1. One extreme is simply to turn
on or off certain well-known functions such as MAC learning, ICMP
handling or path protection switching (cf. left-hand side of Fig. 1).
This is for example the current approach used in the recent versions
of the OpenFlow specification [33]. The main drawback is that this
approach does not really create an abstraction of the capabilities
in the SDN switch. As such, it does not allow to re-purpose the
capabilities and create new functionality from it. Yet, this option
is easy to support in hardware, as it only requires to expose the
existing functions to the controller. Another extreme option is to
let the SDN controller push arbitrary code fragments to the SDN
switch, which can execute general purpose functions (cf. right-hand
side of Fig. 1). While from a flexibility and re-purpose point of
view this is certainly desirable, it brings along several issues, as the
past research on active networks taught us [9]. Examples of such
issues are the need to support a common code execution platform
on all network elements, the need to guarantee certain throughput
with arbitrary processing, a new world of potential security issues,
etc. Therefore, we believe that the ideal solution lies somewhere in
the middle, following the spirit of the original OpenFlow design.

Contribution.
In this paper we address a specific issue in delegation of control:

the programming of packet generation operations in SDN switches,
and in particular in OpenFlow switches1. Thus, even if we believe
our findings have broader application, this paper will consider only
OpenFlow networks.

Our main contribution is the presentation of an In-Switch Packet
generation (InSP) API, which allows the controller to program the
autonomous generation of packets in the switch. In our API, the
packet generation operation can be specified by providing three
pieces of information: the trigger, the content and the actions. The
trigger tells the switch when a packet should be generated; the con-
tent specifies what are the packet’s header and payload; the actions
specify how the switch should use the packet. We leverage the
OpenFlow abstractions such as flow tables and FTEs, and define
new ones for supporting the specification of the trigger, content and
actions information. First, we define a Packet Template Table to
store the content of the packets that will be generated by the switch.
Each Packet Template Table Entry (PTE) specifies the content of
one packet and has a unique identifier that is used as a reference in
other parts of the API. Second, we add a new OpenFlow instruc-
tion, the InSP instruction, that specifies the actions using standard
OpenFlow actions. Finally, the trigger is provided by defining a

1This work is part of a broader research project, the EU BeBa
project [1], which also studies the options to enable the programma-
bility of stateful forwarding actions and protocols in SDN switches.

FTE that contains the InSP instruction. In fact, the InSP instruction
contains also a PTE’s identifier that points to the corresponding PTE.
Whenever a packet is matched by the FTE, the InSP instruction
is triggered and the pointed PTE is used to generate the packet to
which the instruction’s actions are applied.

We implemented our InSP API in a software prototype, which
we used to evaluate both the API design and its implementation’s
performance. To validate the API’s design, we present the imple-
mentation of a typical service offered in OpenFlow networks, i.e., an
ARP responder, and discuss the implementation of other common
services, such as ICMP handling. The prototype’s performance
evaluation shows that implementing InSP is feasible and beneficial
to the scalability of both switch and controller. In fact, handling
the InSP’s packet generation requires less switch’s resources than
handling an interaction with the controller using the OpenFlow pro-
tocol. Likewise, the control plane scalability is increased, since the
controller is offloaded of the packet generation operations. Further-
more, handling packet generation in the switch guarantees a tenfold
reduction for the packet generation time, when compared to the stan-
dard OpenFlow case, in our prototype. We conclude our evaluation
presenting an extended analytical study of the implementation of
an ARP responder in a datacenter, comparing typical OpenFlow
approaches against an InSP-based approach. Our evaluation shows
that the InSP-based ARP responder can save up to 65%-91% data-
plane messages and 30%-96% control plane messages, depending
on the considered case.

Organization.
The paper is organized as follows. In Section 2 we give an

overview of OpenFlow and of ARP services implementations in
OpenFlow networks, since it is relevant information for the InSP
API design and its evaluation. Section 3 presents the API, while
its application to relevant use cases is discussed in Section 4. In
Section 5 we present our prototype and its evaluation using several
benchmarks, furthermore, we present an analytical study to evaluate
the benefits of using InSP to implement an ARP reponder in a
datacenter. In Section 6 we discuss the rationale behind our design
decisions and point out possible issues. Finally, Section 7 presents
related work and Section 8 concludes the paper.

2. BACKGROUND
This section presents a brief overview over OpenFlow, introducing

concepts and data structures that are required for the understanding
of the InSP design presented in Section 3. Furthermore, we provide
examples of ARP services in OpenFlow networks, since the imple-
mentation of an ARP responder service is the main use case that we
study to validate the InSP API in Section 4 and Section 5.

2.1 OpenFlow
The OpenFlow specification defines a switch programming model

and a network protocol to program/configure the switch. In this
paper we will always refer to the version 1.3 of the OpenFlow
specification [32], since it is widely implemented and deployed.

A switch is described by a pipeline of flow tables. Each flow
table can contain one or more Flow Table Entries (FTEs), which
are constituted by a match part and an instruction part. The match
part is composed by a set of values for packet header’s fields, whose
combination is used to identify a network flow. The instruction
part contains one or more OpenFlow instructions. An instruction is
executed only when the containing FTE matches a packet, and it is
always executed as soon as the packet is matched by the entry. Only
one instruction per type can be attached to a FTE and the instruc-
tion execution order is pre-specified by the OpenFlow specification.

(a) Proactive

(b) Responder

Figure 2: Proactive approaches for ARP handling.

Examples of instruction types are the GoTo instruction, which tells
the switch what should be a packet’s next flow table in the pipeline,
and the WriteActions instruction, which adds OpenFlow actions to
a packet’s action set.

The packet’s action set is a data structure attached to any packet
received by the switch, as soon as the packet is injected in the
pipeline. The action set is initially empty, but it is modified during
the pipeline traversing. For example, a packet could be matched by a
FTE that contains a WriteActions instruction. When the packet exits
the pipeline, all the actions contained in its action set are executed.
Typical actions are SetField, to change the value of a packet header’s
field, and Output. The latter is particularly interesting, because it
is specified together with a port variable, which can be either a
physical switch’s port or a logical one. If a physical port is specified,
the packet is forwarded to such a switch’s port. If a logical port is
used, different operations may be performed depending on the port
type. For instance, a TABLE port tells the switch to re-inject the
packet at the beginning of the switch’s pipeline. Another example
is the CONTROLLER port, which instructs the switch to send the
packet to the controller, using the OpenFlow PACKET_IN message.

We conclude this overview mentioning two OpenFlow protocol
messages: the PACKET_OUT message, which is used by the con-
troller to send a packet to the switch in order to forward it to a
switch’s port(s); and the FLOW_MOD message used by the con-
troller to install and delete FTEs.

2.2 ARP in OpenFlow networks
ARP handling is a basic network function that enables end-hosts

at learning neighbors’ MAC addresses. As such, even being a simple
service, its implementation in SDN is always required and, thus,
critical when end-hosts run unmodified network stacks. In Ethernet
networks, an ARP request is used to learn the MAC address of a host
for which only the IP address is known. A host makes a query for
unknown MAC addresses by sending ARP requests. ARP requests
are flooded to all the other hosts on the same LAN, since they are
encapsulated in Ethernet broadcast frames. Eventually, a request
arrives at the destination host, which sends an unicast ARP reply
that traverses the network back to the sender, providing the MAC/IP
address mapping information. The support for this basic function in
OpenFlow networks may be introduced either proactively (cf. Fig.
2), without involving the controller in the ARP handshake, or it can

(a) Responder in ctrl

(b) Unicast

Figure 3: Reactive approaches for ARP handling.

be introduced using a reactive approach (cf. Fig. 3), which requires
the controller to deal with ARP requests.

In proactive approaches, the controller emulates the behavior of
legacy Ethernet networks. In the most simple case, the controller
proactively installs FTEs to flood the ARP requests (cf. Fig. 2(a)).
This solution keeps the controller unaware of the network location
of the hosts and, in particular, has the drawback of introducing
broadcast traffic in the network. Broadcast may be an issue for
some networks that implement advanced services. For instance, it
may force the implementation of spanning tree protocols to avoid
forwarding loops and, in general, it may require the introduction of
additional complexity in the controller to deal with the broadcast
traffic. An alternative proactive solution, which avoids broadcasts,
involves the deployment of a function that receives all the broadcast
packets [19]. In the case of ARP handling, such a function is an
ARP responder (cf. Fig. 2(b)). The switches at the network’s edge
transform any broadcast ARP message in an unicast ARP message
with the responder as destination. In turn, the ARP responder learns
from the received ARP messages the MAC/IP address mappings,
so that it can later create ARP replies to answer the incoming ARP
requests.

In reactive approaches, shown in Figure 3, the ARP respon-
der function can be implemented in the controller itself (cf. Fig.
3(a)). This is the approach used, for instance, by the OpenDay-
light [29] and ONOS [3] controllers. The edge switch generates
a PACKET_IN message for the controller, which contains the re-
ceived ARP request. Then, the controller responds generating an
ARP reply and sending it to the switch using a PACKET_OUT
message. Finally, the switch forwards the ARP reply. Notice that,
in this case, the controller has to take care of keeping an updated
ARP/IP address mapping information. For example, it may need
to refresh its mapping information by creating ARP requests and
injecting those in the network.

To simplify the controller implementation, the approach of Figure
3(b) can be used instead. In this case, the controller lets the actual
destination host generate the ARP reply. An edge switch forwards
a received ARP request (using a PACKET_IN) to the controller.
Assuming that the mapping information was learned already, the
controller changes the ARP request message’s broadcast destination
MAC address with the known unicast destination MAC address of
the destination host. Then, the modified ARP request message is

sent back to the switch (using a PACKET_OUT), which, in turn,
sends it to the actual destination host that will respond with the
ARP reply. This solution is implemented by the Beacon [8] and
Floodlight [10] controllers.

3. IN-SWITCH PACKET GENERATION API
In this section, we describe the abstractions and design of our In-

Switch Packet Generation (InSP) API, including the corresponding
structures and function calls. Our work is inspired by, and builds on
top of, the abstractions defined by the OpenFlow specification.

A programmable in-switch packet generation operation is de-
scribed by the following three pieces of information:
• trigger: the event in response of which a packet is generated.

For instance, a triggering event could be the reception of a
given packet, or the expiration of a timer.
• content: specifies the packet’s header and payload.
• actions: defines what the switch should do with the packet.

For instance, which switch’s port should be used to send out
the generated packet on the network.

We believe that considering these three components individually
gives greater flexibility and extensibility to the API, as it simplifies
the independent definition and extension of each of those. For
instance, a packet generation may be triggered both by a packet
reception event or by a switch’s port down event. Likewise, the
same generated packet may be associated with different forwarding
actions, depending on the event(s) that triggered the generation.

To provide these components, the InSP API leverages the Open-
Flow’s abstractions, i.e., the flow table and instruction data struc-
tures, and adds two more data structures: the Packet Template Table
and the In-Switch Packet Generation Instruction. The rest of this
section describes these two data structures and their use to provide
in-switch packet generations.

3.1 Packet Template Table
The Packet Template Table is the data structure used to store

the content of the packets the switch will generate. As the name
suggests, a Packet Template Table Entry (PTE) specifies a template
that is used for the generation of a packet’s content, with each PTE
specifying the content for exactly one type of packet. A PTE is
composed of three pieces: (i) a packet template id (pkttmp_id); (ii)
the packet content template; (iii) an array of copy operations. The
pkttmp_id is used to identify a PTE and to reference it from other
data structures defined in the API. The packet content template is
specified as a byte array, which should have the same size of the
packet that is going to be generated. Finally, the copy operations
are applied whenever a new packet has to be generated. Each copy
operation changes a subset of the PTE’s packet content template’s
bytes. Once all the copy operations are applied, the resulting byte
array is used as the generated packet’s content.

A copy operation looks like a regular copy between byte arrays,
being completely specified by data source, offset in the source, offset
in the destination, data length. The destination of the copy operation
is always the generated packet’s content (which is originally a plain
copy of the PTE’s packet content template). The source may instead
have different values and it is one of the parts of the API that is
subject for future extensions, as we discuss later in this section. We
currently allow only one type of source, which is the content of a
packet that triggers the generation of a new packet.

To modify the Packet Template Table’s entries, we defined a
Packet Template Modification (PKTTMP_MOD) message type.
With a semantic similar to the one of OpenFlow’s FLOW_MOD
messages, a PKTTMP_MOD is used to add or delete PTEs. If
the PKTTMP_MOD message contains the “add” command, then

it specifies all the information required by the PTE, i.e., pkttmp_id,
packet content template and copy operations, if any. Instead, if the
PKTTMP_MOD contains a “delete” command, only the pkttmp_id
is specifed.

3.2 In-Switch Packet Generation Instruction
We leverage the OpenFlow’s instruction data structure to create a

new instruction type, the In-Switch Packet Generation instruction,
to trigger the generation of a new packet. The instruction contains a
pkttmp_id and a set of OpenFlow actions. The pkttmp_id is used to
identify the PTE that should be used to create the generated packet’s
content, while the set of actions defines what should happen with
the newly generated packet. The main difference with OpenFlow’s
standard instructions is that the InSP instruction creates a new packet
that the switch has to handle, in addition to the packet that matched
the FTE. Thus, while the standard OpenFlow instructions are applied
to the same packet that was matched by the FTE that triggered the
instruction execution, the InSP instruction is instead just triggered
by such packet and its execution has effects only on the newly
generated packet. As final effect, the original packet received by the
switch, i.e., the triggering packet, will continue its processing on
the switch’s pipeline, while the processing of the newly generated
packet will depend by the actions defined in the InSP instruction.

The support for standard OpenFlow actions in the InSP instruction
opens a number of possibilities for defining the behavior of the
generated packet. For example, a programmer may define an explicit
forwarding action like the OpenFlow’s OUTPUT action, selecting
the switch’s output port to use for the forwarding of the packet.
In another case, the programmer may instead inject the generated
packet in the beginning of the switch’s pipeline. For instance, this
may be helpful when the desired output port is unknown at the
moment in which the InSP instruction is defined, or when the actual
output port should be decided by the current state of the switch.

3.3 InSP walkthrough
As we said in the beginning of this section, an in-switch packet

generation operation is completely specified by the definition of the
trigger, content and actions. The API presented so far allows a pro-
grammer at defining these three components. First, the programmer
specifies the content by creating a PTE. Second, she specifies the
actions by defining an InSP instruction. Finally, the packet genera-
tion trigger is specified by defining a FTE which includes the InSP
instruction in its instructions list.

Assuming that a programmer has performed these three steps,
the in-switch packet generation process unfolds as follows. The
switch receives a packet at one of its ports and injects it in the
flow tables pipeline. The action set gets filled as the packet flows
through the pipeline, since matching FTEs’ instructions may write
actions to it. If the packet is matched by a FTE that contains an
InSP instruction, then the packet generation process is triggered.
A new packet is created by copying the InSP instruction’s packet
content template. Then, copy operations are applied to the newly
generated packet. For example, a copy operation may copy the
received packet’s source Ethernet address and write it to the new
packet’s destination Ethernet address. Finally, the InSP instruction’s
actions are applied to the packet. Notice that the InSP instruction
only contains actions that are immediately applied to a packet. That
is, the newly generated packet is not associated with an action set.
The triggering packet, which is still being processed by the pipeline,
continues its processing after the InSP instruction has been executed.
That is, the triggering packet eventually exits the pipeline and its
action set is executed.

3.4 Issues and extensions

It is worth to highlight a few important points that stem out from
the description we presented so far.
Copy operation. We defined just one possible source for a copy op-
eration, which is the content (header and payload) of the triggering
packet. We believe several different sources may be specified, for
instance we foresee as possible sources the values of an entry in a
flow table, a counter’s value, a timeout value, etc. We believe that
the definition of new copy operation’s sources will come as soon as
use cases will bring new requirements. A second observation is that
a copy operation is completely agnostic to protocol definitions, i.e.,
a predefined number of bytes is copied starting from a given offset,
without any knowledge about, e.g., header fields locations. This
may rise concerns regarding copying the wrong data if the packet in-
cludes, e.g., unexpected header fields. However, we believe this way
we can provide much more flexible and efficient packet generation
procedures, while still giving programmers a mean to guarantee the
correct execution of the packet generation. For instance, a program-
mer can define the FTEs in order to make sure that only packets
with the expected packet header fields are actually handled by a
given PTE. In effect, this way we leverage the packet parsing done
by the switch to perform FTEs matching, without wasting addi-
tional resources to parse again the packet during copy operations
execution.
Checksum. So far, for clarity we have omitted in our presentation
the need to deal with protocols’ checksum. While for the Ethernet’s
header the checksum may be easily added automatically by the
outgoing network interfaces, this may not be the case for other
protocols’ checksum, such as IP, ICMP, TCP, etc. In InSP we
support the definition of a checksum in a generated packet using
checksum operations. One could think of a checksum operation
as a special type of copy operation, which contains the following
information: type, source offset, length, destination offset. The
source field of the copy operation is substituted by a type field in
this case, since the source for a checksum operation is always the
content of the generated packet. The field is instead used to specify
the type of checksum, which specifies also its length in bytes. A
checksum operation is used in the same way of copy operations, i.e.,
it is contained in a PTE.
InSP instruction processing. When a InSP instruction is executed,
the corresponding processing of a generated packet is decoupled
from the processing of the triggering packet, i.e., the packets are
handled independently in the switch. It should be clear that while we
mention an immediate execution for the InSP instruction, whenever
it is triggered, we actually do not mandate any ordering between
the processing of the generated and of the triggering packets. In
other words, one can think of the process of generating a packet as a
parallel execution thread to that of processing the triggering packet.
The rationale behind this decision is that we believe mandating an or-
dering may help only in the implementation of a small subset of use
cases, while we recognize it is not always achievable (or desirable)
to have it. For example, in a hardware switch the packet generation
may be performed on the slow path of the device, while packet
forwarding happens in the fast path. Mandating, e.g., that packet
generation should happen before the triggering packet handling may
delay the packet forwarding process, which may be undesirable.
Moreover, it may introduce complications to the switch implemen-
tation, as the triggering packet may require staging in a buffer while
waiting for the packet generation. Please notice that the lack of a
mandated execution ordering does not break the OpenFlow specifi-
cation with regard to the relative instructions execution ordering. In
fact, instruction ordering according to OpenFlow relates only to the
handling of a received packet, while the unspecified ordering in our

Figure 4: InSP implementation of an ARP responder.

API is related to the relationship between the processing events of
two different packets (the received and the generated ones).
Trigger. Since the OpenFlow’s instructions can be attached only
to a FTE, our API can trigger the generation of a packet only in
reaction to the reception of a packet at the switch. This admittedly
limits the applicability of our packet generation API as we cannot
handle, for instance, timed events. We believe it is possible to
provide extensions to include additional triggering logic, such as
programmable timers in the switch, that could complement our InSP
API. However, we believe that providing such extensions is out of
the scope of our InSP proposal. In fact, we provide use cases that
can be already fully implemented with the defined InSP API. As
such, we believe the InSP API has already a value as is, and will
consider any extension as part of our future work.

4. EXAMPLES
In this section we provide application examples of the InSP API

for the implementation of ARP and ICMP handling. While we could
report on the implementation of more complex and innovative use
cases, we believe these two examples immediately highlight the
advantages of the proposed API in relation to the current OpenFlow-
based approach.

4.1 ARP
When the network supports the InSP API, ARP handling can be

implemented leveraging the packet generation capabilities of the
switches. In this case, a switch generates an ARP reply when it
receives an ARP request for a known host (Fig. 4). The procedure to
program a switch unfolds as follows. First, whenever the controller
learns a MAC/IP address mapping, a corresponding PTE is installed
at the edge switches. The PTE specifies an ARP reply with the
MAC/IP address mapping information. It also includes a set of copy
operations to copy the source MAC and IP addresses of a triggering
packet to the PTE content’s bytes corresponding to (i) the header’s
destination MAC and IP addresses, and (ii) the ARP reply’s target
addresses. Together with the PTE, also a FTE is installed. Such
FTE matches the ARP requests that will trigger the generation of
a packet using the aforementioned PTE. Fig. 5 shows an example
of configurations for the Packet Template Table and Flow Table for
the case of Fig. 4. The InSP instruction’s action is OUTPUT(table),
thus, it injects a generated packet in the switch’s pipeline, where
it will be matched by the second FTE. Such entry is configured
by the controller to implement L2 forwarding, since the generated
packet has the Ethernet’s destination MAC address set to the ARP
request’s source MAC address value, it will be forwarded to the
correct switch’s port.

4.2 ICMP
The InSP API enables an easy implementation of many ICMP

reply messages. For instance, Figure 6 shows the tables configura-
tion used to generate ICMP TimeExceeded messages when an IP

Figure 5: Example of Packet Template Table and Flow Table
configurations for handling ARP requests.

Figure 6: Example of Packet Template Table and Flow Table
configurations for the generation of ICMP Time Exceeded mes-
sages.

packet with TTL=1 is received. In particular, notice the use of the
checksum operations for setting both the IP and ICMP checksums.

5. EVALUATION
This section presents a prototype implementation of the InSP API

and a number of benchmarks that evaluate the prototype’s perfor-
mance. Then, we study the case of ARP handling in a datacenter,
to evaluate the impact on the number of control and data messages
generated when the network supports InSP, comparing it to two
standard OpenFlow cases.

5.1 Benchmarks
To test the InSP API, we implemented a software prototype for

both the switch and the controller sides. The switch implementation
is based on OfSoftSwitch13 [27], and requires the addition of less
than 700 lines of C code to the original switch’s code base. For
the controller side, we modified the RYU SDN framework [35]
to support the generations of the PKTTMP_MOD messages and
the specification of InSP instructions: a modification that required
less than 300 lines of python code. In both cases, the InSP API
was implemented as an OpenFlow’s experimenter extension, which
allows one at introducing new features in an OpenFlow switch, while
being compatible with any other OpenFlow switch and agnostic to
the OpenFlow protocol version. The rest of this subsection describes
an evaluation of our implementation in terms of in-switch packet
generation reaction time, processing costs for an InSP instruction,
performance impact on the controller and memory requirements for

OpenFlow InSP
0
5

10
15
20
25
30
35
40

m
ill

is
ec

on
ds

Figure 7: Time (in milliseconds) to generate an ARP reply when
using traditional OpenFlow (i.e., involving the controller) and
when using InSP.

the Packet Template Table.
All the tests are executed on a computer equipped with an In-

tel(R) Core(TM) i5-2540M CPU @ 2.60GHz (2 cores, 4 threads).
During the tests hyper-threading has been disabled. The operating
system and the load generator run on the first CPU’s core. We
use Nping [26] as load generator, sending ARP packets at different
rates depending on the test. The controller and the switch share the
second CPU’s core. Any communication between the controller
and the switch happens over a local TCP channel. We run a single
switch instance and an ARP responder application at the controller
during our tests. The controller’s application installs a PTE at the
switch, which contains an ARP reply template. Then, it installs a
FTE that contains an InSP instruction, in order to trigger the packet
generation upon reception of an ARP request. In all the cases we
compare the InSP implementation of the ARP responder with an
analogous application implemented using standard OpenFlow. The
OpenFlow ARP responder installs a FTE at the switch to generate
a PACKET_IN upon reception of an ARP request. The controller
answers to the PACKET_IN with a PACKET_OUT that contains a
statically defined ARP response, in order to minimize the processing
time at the controller.

Reaction time. In our first test, we measure the time it takes to
send an ARP request and receive the corresponding ARP reply.
That is, we define the reaction time as the time difference between
the time of reception of an ARP reply and the time at which the
corresponding ARP request was sent. We generate ARP requests
instrumenting Nping to generate a total of 100 requests at a rate of
5 requests per second.

As expected, the response time is much lower for the InSP case
(cf. Fig. 7), with an average reaction time of less than 1ms, since
the ARP reply is generated as soon as the ARP request is received
at the switch. For the OpenFlow case, instead, the generation of a
response requires a round trip with the controller (PACKET_IN +
PACKET_OUT), which is furthermore running on top of the python
interpreter. Thus, the reaction time grows to 10-20ms, in most of the
cases. Please notice that even if we recognize that most of the delay
in this case is introduced by the python implementation, for which
the high variation in the measured reaction time is an evidence,
we also point out that most of the controllers are implemented in
high level languages, such as Java or python. Furthermore, the
InSP ARP responder application is also implemented in python,
but, by pushing the generation of packets down to the switch, the
controller implementation technology is decoupled from the actual
packets generation performance. Finally, the InSP case speeds up
the response generation by avoiding the communication with the
controller, which may introduce bigger delays in geographically
distributed networks.

0

2

4

6

8

10

12

14

C
PU

tim
e

(%
)

5.23
6.63

4.68

PKT IN
PKT IN + PKT OUT
InSP

Figure 8: Average CPU time (in %) used by the software
switch to process 100 ARP requests per second. Three cases
are shown: the switch generates only PACKET_IN messages,
the switch generates PACKET_IN and process the correspond-
ing PACKET_OUT, the switch implements InSP and performs
an in-switch packet generation.

Switch CPU. While the reaction time may be improved with switches
that implement the InSP API, one may be concerned about the in-
creased processing load on the switch. In fact, the switch’s CPU is
one of the performance bottlenecks for current SDN and OpenFlow
switches [18]. To understand the cost of implementing in-switch
packet generation, we run a new test using the ARP responder
application, monitoring the CPU time used by the switch in the
meanwhile. Again, we compare the results with a switch configured
to run the standard OpenFlow version of the ARP responder, in
which the switch does not perform packet generation, but has to
handle PACKET_IN and PACKET_OUT messages. In this test, we
instrument Nping to generate ARP requests at a rate of 100 packets
per second, over a time window of 50s. In Fig. 8, the central bar
and the right-hand bar show the results of our test for the OpenFlow
and InSP case, respectively. From the results it is clear that the
in-switch packet generation is actually cheaper in terms of CPU
time than the PACKET_IN/PACKET_OUT handling. Actually, in a
third test, in which we let the switch generate only PACKET_INs
without processing PACKET_OUTs in response, we verified that the
PACKET_INs handling alone is more expensive than the in-switch
packet generation (cf. left-hand bar of Fig. 8). The explanation
for this somewhat counterintuitive result is that the generation of a
PACKET_IN is a more complex operation than the in-switch packet
generation. In fact, the PACKET_IN handling includes copying
the received packets, encapsulating it in an OpenFlow message and
sending it to the controller using TCP. Also, notice that a similar
processing is required for the PACKET_OUT handling as well. The
in-switch packet generation, instead, requires only a lookup in a
hash table (to find the relevant PTE) and a few copy operations.
Controller CPU. In this test we consider also the impact of using
InSP on the system constituted by the combination of controller
and switch. In fact, while the switch CPU load lowers, with InSP
the controller’s CPU is completely offloaded, making the combined
system more scalable than its standard OpenFlow alternative. Fig.
9 shows the CPU loads (in percentage over the overall CPU time)
during the test. The figure plots the CPU load contributed by the
controller, the switch and the total resulting from the sum of these
two contributions, both for the case of standard OpenFlow and InSP
implementations. As in the previous test, we run the OpenFlow and
InSP versions of the ARP responder application, generating 100
ARP requests per second for 50s. The results show that, overall, the
InSP implementation requires much less system-wide resources than
the OpenFlow implementation, in terms of processing time. That
is, while the former uses about 5% of the CPU time (the controller
does not contribute to the load), the latter requires about the 60% of

10 20 30 40 50
Time

100

101

102

C
PU

tim
e

(%
)

PKT IN + PKT OUT switch
PKT IN + PKT OUT ctrl

InSP switch
InSP ctrl

PKT IN + PKT OUT tot
InSP tot

Figure 9: CPU time (in %) used by the software switch to pro-
cess 100 ARP requests per second, over a period of 50 seconds.
The current OpenFlow approach, which includes the process-
ing of PACKET_IN and PACKET_OUT both at the switch and
the controller, is compared to the InSP approach.

it, mostly because of the controller processing time.
Memory. For the implementation of the InSP API on a switch, after
the processing time (i.e., CPU) another important resource to take
into account is memory. In fact, a switch has usually limited memory
that can be used to implement additional data structures. While the
memory used for installing FTEs with InSP instructions should
not have any significant impact when compared to the OpenFlow
case, e.g., because in the OpenFlow case there would be anyway
FTEs for generating PACKET_INs, the InSP’s Packet Template
Table is a completely new data structure that OpenFlow does not
implement. In our implementation, each PTE is relatively small,
with just 4B required for the pkttmp_id and 32B (source, source
offset, destination offset and length are variables of 4B each) for
each copy operation. However, the packet content template size
is at least 60B (minimum Ethernet frame size, excluding the 4B
CRC code) and may grow to several hundreds of bytes depending
on the packets that the programmer wants to generate. Therefore,
since memory is limited, a switch cannot support the definition of
millions of PTEs with packet content templates of several hundreds
of bytes. Nonetheless, we do not believe memory will be an issue for
most of the use cases, as many packets that may require in-switch
generation are small ones (e.g., ARP replies). In this case, even with
one million PTEs, the Packet Template Table would be in the size of
100s of MBs, which easily fits the DRAM of modern switches [6].

5.2 ARP handling in datacenter
So far we have shown the benefits of implementing the InSP API

in a switch, still we did not perform any evaluation of the impact of
using the API in a network. To this end, we provide an analytical
study of an InSP-based implementation of the ARP handling use
case in a datacenter. Our analytical evaluation compares the number
of control and data massages generated by the InSP-based solu-
tion against those generated by the OpenFlow reactive approaches
presented in Section 2.

5.2.1 Topology, parameters and assumptions
For the purpose of this analysis, we assume a typical datacenter

hierarchical network [2] like the one shown in Figure 10. In such
highly redundant topologies, protocols like ARP can produce a large
amount of broadcast traffic [11].

In our model, the network is managed by an OpenFlow controller
and it is composed of: (i) a single core switch (C); (ii) M aggregation
switches, each of which is connected to the core switch and to
each of its neighboring aggregation switch(es); (iii) as many edge

Figure 10: Datacenter topology model

switches as aggregation ones, i.e., M, each of which is connected
to all the aggregation switches and to each of its neighboring edge
switch(es). Finally, we assume that each of the edge switches is
connected to α hosts. The total number of switches (S), hosts
(N) and links (E) in the considered network is shown in Table 1,
together with a summary of the aforementioned parameters. To
perform our analytical evaluation, we introduce also the parameter d
(for "distance"), which represents the maximum number of switches
in the shortest path between two hosts2.

Throughout our evaluation, we assign to each host a state value
that can be either learnt (L) or not learnt (NL). For a learnt host,
the controller knows the host’s MAC/IP address mapping, while in
case of a not learnt host the mapping is unknown. This classification
is helpful to define the behavior of the controller in the 4 possible
communication scenarios for an ARP interaction between hosts.
That is, an ARP request can be sent by a host which is either learnt
or not, to a host which is either learnt or not. Notice in our model
a host never changes its state from learnt to not learnt. While
the state change from not learnt to learnt can happen in different
ways, depending on the considered ARP handling implementation.
In all the cases, whenever a host state changes from not learnt to
learnt, the controller installs a FTE in all switches to enable direct
forwarding of unicast L2 frames to the learnt host. Also, we assume
the controller will enforce the forwarding of the flows using the
shortest path between the hosts.

5.2.2 Evaluation scenarios and comparative results
Base scenarios and closed-form formulas. We consider three
ARP handling implementation approaches: OpenFlow unicast (OF-
unicast, cf. Fig. 3(b)), OpenFlow responder (OF-responder, cf. Fig.
3(a)) and InSP (cf. Fig. 4).

In OF-unicast, when a host (L or NL) sends an ARP request,
the first switch on the path generates a PACKET_IN message from
which, if the host was not learnt, the controller learns the host’s
MAC/IP address mapping. Then, if the destination host is learnt, the
controller sends a PACKET_OUT back to the switch transforming
the ARP request from broadcast to unicast (cf. Section 2). Oth-
erwise, the ARP request is flooded. In the former case, the ARP
request travels throughout the network to the destination host, which
generates the ARP reply and sends it back to the requesting host. In
the latter case, the ARP request is flooded and at each next switch a
new interaction with the controller (PACKET_IN/PACKET_OUT)
happens, followed by a new flooding. Notice that, in this case, we
assume the controller enforces a spanning tree for the broadcast
packets, i.e., broadcast messages are counted once per link.

2Notice that the number of switches between 2 hosts actually de-
pends on the relative location of the hosts. We believe that always
using the maximum value for this parameter, for all the evaluated
scenarios, is a reasonable approximation to simplify the model.

Table 1: Description of the evaluation parameters
Par. Description Value(s)

C # of core switches 1
M # of aggr/edge switches 2 ≤ M ≤ 50
α # of hosts per edge switch 5 ≤ α ≤ 50
S Tot # of switches 1 + 2M
N Tot # of hosts Mα
E Tot # of links M2 + M(α+3) - 2
d Max # of switches on the d=M for 2≤M≤3

shortest path between 2 hosts d=3 for M>3

In OF-responder, when a host (L or NL) sends an ARP request,
the first switch on the path generates a PACKET_IN message from
which, if the host was not learnt, the controller learns the host’s
MAC/IP address mapping. If the destination host is learnt, the con-
troller generates an ARP reply and sends it back to the switch using
a PACKET_OUT message. In turn, the switch forwards the ARP
reply to the requesting host. When the destination host is not learnt,
the controller sends a PACKET_OUT for each port not connected
to a switch of each edge switch. That is, in our model the controller
sends as many PACKET_OUTs as hosts3. The switches in turn
forward the ARP request contained in the received PACKET_OUT.
When the destination host responds with an ARP reply, the receiving
switch sends it to the controller using a PACKET_IN message. At
this point, the state of the destination host becomes learnt, and the
controller sends a PACKET_OUT to the requesting host’s switch, in
order to deliver the ARP reply.

In the InSP case, all the interactions involving not learnt hosts
work as in the OF-responder case. However, whenever a host is
learnt, together with the installation of the related FTEs, the con-
troller installs PTEs for generating ARP replies for such host, in
all the edge switches. Thus, after a host state becomes learnt, any
ARP reply, for an incoming ARP request for such host, is generated
directly at the edge switch where the request is first received.

In Table 2 we provide the formulas for calculating the number of
messages, associated to each scenario for each category of traffic.
From the formulas, we can observe that OF-unicast uses more
dataplane messages, while OF-responder and InSP generate the
same number of ARP messages. Furthermore, OF-responder and
InSP generate the same number of control plane messages for the 3
first scenarios. However, once mappings are learnt ("L-L" scenario),
InSP does not need generating any control plane messages any more,
since ARP replies are generated by the switch. Indeed, this last
case where MAC/IP address mappings are known is supposed to
happen more often than the cases that involve interactions with not
learnt hosts. That is, we assume that the learning usually happens
only when the host first connects to the network and that the learnt
information does not change for a reasonable period of time.
General evaluation. To quantify the benefits that InSP may of-
fer, we perform an analysis that is representative of an operational
network. We analyze the number of messages generated by the
ARP protocol during normal operation, i.e., by considering together
the individual scenarios identified above. For this evaluation, we
consider that each host in the studied topology wants to ping all
the other hosts, assuming that no host is learnt at the beginning,
and that pings are generated sequentially (no simultaneous pings).
Thus, when a first host pings the N-1 other hosts, the ARP request
generated for the very first ping falls into the NL to NL case, and
the first host becomes learnt. Then, the ARP requests generated for
the N-2 following pings fall into the L to NL scenario. After the N-1
first pings, all hosts are Learnt, and all subsequent ARP requests

3actually, N-1, since the requesting host port is excluded

(a) M=2 ; 4≤N≤200 (b) M=10 ; 20≤N≤1000 (c) M=50 ; 100≤N≤5000

(d) M=2 ; 4≤N≤200 (e) M=10 ; 20≤N≤1000 (f) M=50 ; 100≤N≤5000

(g) M=2 ; 4≤N≤200 (h) M=10 ; 20≤N≤1000 (i) M=50 ; 100≤N≤5000

Figure 11: Comparison of InSP versus OpenFlow-unicast and OpenFlow-responder for ARP handling.

Table 2: Closed-form formulas for the different scenarios
Scenario # ARP mess. # CTRL mess.

NL-NL OF-unicast E+d+1 2.[E-(N-1)+S]+d+3
NL-NL OF-resp N+2 N+2S+3

NL-NL InSP N+2 N+2S+3
NL-L OF-unicast 2.(d+1) S+2

NL-L OF-resp 2 S+2
NL-L InSP 2 S+2

L-NL OF-unicast E+d+1 2.[E-(N-1)]+S+2
L-NL OF-resp N+2 N+S+3

L-NL InSP N+2 N+S+3
L-L OF-unicast 2.(d+1) 2

L-L OF-resp 2 2
L-L InSP 2 0

fall into the L to L scenario.
The sum of the formulas identified above for the individual sce-

narios, weighted according to this sequence, gives closed-form
formulas to compute the number of messages generated for this
global operation for the 3 approaches. The generic formula is given

by Eq. 1.

#total = 1× (#ARPNL−NL +#CTRLNL−NL)

+(N-2)× (#ARPL−NL +#CTRLL−NL)

+(N-1)×(N-1)× (#ARPL−L +#CTRLL−L)

(1)

We computed the formula for each ARP handling approach and
for different topology sizes, when the number of hosts in the network
increases. The results are shown in Fig. 11, where we plot the
number of ARP requests and replies (Fig. 11(a) to 11(c)), the number
of control plane messages (Fig. 11(d) to 11(f)) and the resulting
messages reduction in the data and control planes offered by InSP
versus OF-unicast and OF-responder.

On the data plane side, we observe (Fig. 11(a) to 11(c)) that OF-
unicast generates more messages than any of the 2 other approaches,
no matter the size of the topology and the number of hosts. This is
due to not only broadcasting ARP requests when hosts are not learnt,
but also forwarding ARP requests up to the target host even when
it is learnt. With OF-responder however, the controller forwards
the request to only a subset of switches when not learnt hosts must
be discovered, and handles itself the resolution for learnt hosts.
This way, only 2 ARP messages are generated for the resolution of

known mappings. In this, InSP performs the same as OF-responder
in terms of data messages. However, in this case the ARP replies are
generated by the switch that received the request, without involving
the controller (and thus improving also reaction times, cf. Fig. 7).

The offloading of the control plane is visible in Fig. 11(d) to 11(f),
where the number of packets generated with InSP is clearly lower
than for the 2 other approaches, whatever the size of the topology and
the number of hosts. It is interesting to observe that OF-responder
generates more control plane messages than OF-unicast when the
number of nodes is high in small to medium topologies. This hap-
pens because in OF-responder the number of Packet-Out messages
is proportional to the number of hosts and switches, while it is rather
related to the size of the topology (number of links and switches)
in the OF-unicast case. We also note that, while InSP behaves like
OF-responder during the learning phase, it produces much less mes-
sages because no controller interactions are required once mappings
are learnt.

A summary of the reduction in the number of messages obtained
using InSP is shown in Fig. 11(g) to 11(i). In these figures, since
InSP does not offer any gain in the data plane compared to OF-
responder (cf. Table 2), we did not plot the corresponding line.
When compared to OF-unicast, however, InSP saves from 63% to
91% of ARP messages for a small number of nodes in small to large
topologies, respectively, and this gain converges around 67% in any
case4.

In the control plane, compared to OF-unicast, InSP saves from
58% to 96% of the messages for a small number of nodes in small to
large topologies, respectively. These savings decrease to about 50%,
55% and 66% when the number of nodes grows in small, medium
and large topologies, respectively. In any case, the control message
savings are always above 50%. When compared to OF-responder,
InSP saves 30%, 45% and 49% of the messages for a small number
of nodes in small, medium and large topologies, respectively. Each
of these already significant gains increases with the number of nodes
up to a convergence point of 66%, whatever the size of the topology.

6. DISCUSSION
In this section, we discuss how we envision the design of networks

that support the InSP API, consistency issues between the state at
the controller and the configured PTEs and implementation options
for the API in hardware switches.
Network design. The InSP API introduces a new function that
is executed by the switch autonomously, according to some local
information provided by the controller. The controller is in charge
of deciding which one of the switches should generate a given set
of packets. For instance, in our ARP in datacenter evaluation of
Section 5, we evaluated a strawman solution for the InSP case, dis-
tributing all the PTEs for the ARP replies generation to all the edge
switches. An alternative solution may decide for the installation of a
PTE only in those switches that are supposed to see very frequently
corresponding ARP requests. Also, one could design an algorithm
in which only a subset of switches is in charge of handling packet
generations. We believe that the implementation of more complex
use cases will require the exploration of smart distribution strategies
for the PTEs, in similar manner to what today’s OpenFlow networks
do with FTEs [16].
Consistency. The distribution of state to switches may create incon-
sistencies between the actual state of the network and the informa-
tion stored in a switch. This is a general problem of any distributed
systems, and as such it affects also switches that implement InSP.

4OF-responder, compared to OF-unicast, would offer the same
gains in the data plane.

Considering again as example the ARP case, a given PTE in a switch
may provide an ARP reply for a host which is not connected to the
network anymore. The reason may be that the switch’s PTEs where
not updated yet after the host disconnected. While this may be a big
issue in some cases, we believe that in no way this is different from
any other distributed system. That is, any network design should
take into account the possibility of incurring in stale information.
In fact, for ARP this is already the case even in legacy systems
(ARP caches on end hosts are not updated for tens of seconds). The
InSP API does not introduce a timeout concept to help with the
implementation of strategies that guarantee consistency. However,
to the same purpose the FTE’s timeouts can be used instead, since
without a trigger (i.e., the FTE) a packet is never generated anyway.
Implementation options. While our software implementation shows
that the InSP API is a very simple addition to both controller and
software switches, we did not try to implement it in a hardware
switch. However, considering that legacy switches and routers al-
ready handle messages generation, usually in the device’s slow path,
we believe that supporting InSP in a hardware switch should be
as simple as supporting it in software switches. In fact, the imple-
mentation would actually be done in software, as part of the switch
firmware that already implements the OpenFlow agent.

7. RELATED WORK
In this Section, we present an overview of the related work, which

we organize in three categories. First we present work that deals
with the problem of delegation of control, i.e., approaches that
address the same issues or are complementary to those addressed
by us. Then, we present work that deals with the SDN scalability,
including work that handles packet generation scalability in SDN.
Finally, we present an overview of switch architectures that may
be of interest for the implementation of InSP in different switch
technologies.

Delegation of control. How to distribute functions between the con-
troller and the switch is a typical dilemma in Software-defined archi-
tectures. OpenFlow [24] introduced switches that can only deal with
forwarding actions execution, leaving to the controller any decision
logic. Quite early in the days of OpenFlow, the scalability concerns
with such an architecture triggered several works that revisited the
functions distribution. DevoFlow [25] proposes to devolve back to
the switch some functions for taking fast rerouting decisions and
to increase the efficiency of traffic statistics gathering. Difane [39]
computes the forwarding rules distribution strategy at the controller,
but delegates the action of actually distributing the rules to a subset
of switches, called authority switches. In OpenState [4], the switch
is enhanced with the ability to perform stateful forwarding actions.
In addition to the flow programming model introduced with Open-
Flow, OpenState introduces a finite state machine programming
model. The model allows the controller to define flow states and
state transition logic that is executed autonomously by the switch.
Other approaches addressed the delegation issue exclusively on the
controller side, introducing a hierarchical controller architecture [5].
The delegation decision, in this case, is about the distribution of
functions between different controllers. For instance in Kandoo [12]
a two layers structure is defined, with local and “remote” controllers.
A local controller performs a shorter control loop with the switch
but has no visibility about network-wide state, while the remote
controller can take decisions knowing the network-wide state but
being offloaded of the handling of local events.
SDN scalability. The studies of delegation of control and SDN
scalability issues are intertwined. The previously mentioned hi-
erarchical controller architectures deal with controller scalability,

however there are other important scalability challenges in SDN
switches. For instance, several production deployments of SDN
pointed out that switches cannot interact with the controller at
high rates. For example, OpenFlow switches can support a limited
number of FTEs installations and only generate a limited number
of PACKET_INs per second [14, 18]. To deal with these issues,
in Tango [22] the controller is enhanced with a system that mea-
sures and takes into account several performance properties of the
switches, in order to optimize the interactions of the switches with
the controller. In Scotch [38], the limited switch performance in han-
dling PACKET_INs is addressed by building and orchestrating an
overlay network, which is used to move the PACKET_IN generation
to auxiliary switches.
Switch architectures. In an effort to increase scalability and flexi-
bility of the SDN switches, several proposals have been dealing with
new switch architectures. While we already mentioned DevoFlow
and OpenState, which add features to a switch, in this paragraph
we present work that revisits the switch design to increase the per-
formance of currently available switch’s functions. For instance,
ShadowSwitch [6] combines a software switch with a hardware
switch to improve on the FTEs installation time. In general, hy-
brid hardware/software architectures have been proposed also to
enlarge switch’s buffers when required [23] and to increase flow
tables’ size [17]. Recently, a lot of attention has been raised by the
implementation of re-configurable hardware switches [7] and by the
definition of configuration languages to deal with them [37].

While all the cited works are somewhat related to the InSP API,
our differs from the previous work in the field, since it is the first
one that proposes and evaluates a general API to program packet
generation in the switches. Furthermore, using the InSP API, we
demonstrated that we are able to improve on both controller and
switch scalability.

8. CONCLUSION
This paper presented the In-Switch Packet generation API for

OpenFlow switches. The programmable in-switch generation of
packets slightly redraws the separation between controller’s and
switch’s functions, enabling the controller at offloading some of its
tasks while still maintaining full control over the network according
to the SDN principles. We demonstrated that the InSP API is helpful
for the implementation of very common use cases, such as ARP
and ICMP handling, while being beneficial to both the switch and
controller scalability. In particular, the in-switch packet generation
operation, implemented in our prototype, requires less resources
than the handling of an interaction with the controller. Furthermore,
the controller is completely offloaded of any packet generation
operation. Our analytical study about the application of the InSP
API, for the handling of ARP in a datacenter, also shown that the
total number of control messages can be reduced from 30% to 96%,
depending on the network topology and on the used OpenFlow
implementation.

The InSP API has been already presented to the ONF, where we
are committed to continue with the standardization of the interface.
In view of that, we plan to implement a number of new use cases
in the near future. A task for which we ask the help of the research
community by making available our prototype implementation as
open source code [1].

Acknowledgment
This work has been partly funded by the EU in the context of the
“BEBA” project (Grant Agreement: 644122).

9. REFERENCES
[1] Beba—behavioural based forwarding, 2015.

http://www.beba-project.eu/.
[2] T. Benson, A. Akella, and D. A. Maltz. Network traffic

characteristics of data centers in the wild. In Proceedings of
the 10th ACM SIGCOMM Conference on Internet
Measurement, IMC ’10, pages 267–280, New York, NY, USA,
2010. ACM.

[3] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi,
T. Koide, B. Lantz, B. O’Connor, P. Radoslavov, W. Snow,
and G. Parulkar. ONOS: Towards an open, distributed SDN
OS. In Proceedings of the 3rd ACM SIGCOMM Workshop on
Hot Topics in Software Defined Networking (HotSDN), 2014.

[4] G. Bianchi, M. Bonola, A. Capone, and C. Cascone.
Openstate: Programming platform-independent stateful
openflow applications inside the switch. SIGCOMM Comput.
Commun. Rev., 44(2):44–51, Apr. 2014.

[5] R. Bifulco, R. Canonico, M. Brunner, P. Hasselmeyer, and
F. Mir. A practical experience in designing an openflow
controller. In Software Defined Networking (EWSDN), 2012
European Workshop on, pages 61–66, Oct 2012.

[6] R. Bifulco and A. Matsiuk. Towards scalable sdn switches:
Enabling faster flow table entries installation. In Proceedings
of the 2015 ACM Conference on Special Interest Group on
Data Communication, SIGCOMM ’15, pages 343–344, New
York, NY, USA, 2015. ACM.

[7] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown,
M. Izzard, F. Mujica, and M. Horowitz. Forwarding
metamorphosis: Fast programmable match-action processing
in hardware for sdn. In Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM, SIGCOMM ’13, pages
99–110, New York, NY, USA, 2013. ACM.

[8] D. Erickson. The beacon openflow controller. In Proceedings
of the Second ACM SIGCOMM Workshop on Hot Topics in
Software Defined Networking, HotSDN ’13, pages 13–18,
New York, NY, USA, 2013. ACM.

[9] N. Feamster, J. Rexford, and E. Zegura. The road to sdn: An
intellectual history of programmable networks. SIGCOMM
Comput. Commun. Rev., 44(2):87–98, Apr. 2014.

[10] Floodlight SDN Controller.
http://www.projectfloodlight.org/floodlight/.

[11] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. Vl2: A
scalable and flexible data center network. Commun. ACM,
54(3):95–104, Mar. 2011.

[12] S. Hassas Yeganeh and Y. Ganjali. Kandoo: A framework for
efficient and scalable offloading of control applications. In
Proceedings of the First Workshop on Hot Topics in Software
Defined Networks, HotSDN ’12, pages 19–24, New York, NY,
USA, 2012. ACM.

[13] B. Heller, R. Sherwood, and N. McKeown. The controller
placement problem. In Proceedings of the First Workshop on
Hot Topics in Software Defined Networks, HotSDN ’12, pages
7–12, New York, NY, USA, 2012. ACM.

[14] D. Y. Huang, K. Yocum, and A. C. Snoeren. High-fidelity
switch models for software-defined network emulation. In
Proceedings of the Second ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networking, HotSDN ’13, pages
43–48, New York, NY, USA, 2013. ACM.

[15] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle,
S. Stuart, and A. Vahdat. B4: Experience with a

globally-deployed software defined wan. SIGCOMM Comput.
Commun. Rev., 43(4):3–14, Aug. 2013.

[16] N. Kang, Z. Liu, J. Rexford, and D. Walker. Optimizing the
"one big switch" abstraction in software-defined networks. In
Proceedings of the Ninth ACM Conference on Emerging
Networking Experiments and Technologies, CoNEXT ’13,
pages 13–24, New York, NY, USA, 2013. ACM.

[17] N. Katta, J. Rexford, and D. Walker. Infinite CacheFlow in
software-defined networks. In Proceedings of the 3rd ACM
SIGCOMM Workshop on Hot Topics in Software Defined
Networking (HotSDN), 2014.

[18] M. Kobayashi, S. Seetharaman, G. M. Parulkar,
G. Appenzeller, J. Little, J. van Reijendam, P. Weissmann, and
N. McKeown. Maturing of openflow and software-defined
networking through deployments. Computer Networks, 61,
2014.

[19] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda,
B. Fulton, I. Ganichev, J. Gross, N. Gude, P. Ingram,
E. Jackson, A. Lambeth, R. Lenglet, S.-H. Li,
A. Padmanabhan, J. Pettit, B. Pfaff, R. Ramanathan,
S. Shenker, A. Shieh, J. Stribling, P. Thakkar, D. Wendlandt,
A. Yip, and R. Zhang. Network virtualization in multi-tenant
datacenters. In Proceedings of the 11th USENIX Conference
on Networked Systems Design and Implementation, NSDI’14,
pages 203–216, Berkeley, CA, USA, 2014. USENIX
Association.

[20] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and
S. Shenker. Onix: A distributed control platform for
large-scale production networks. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’10, pages 1–6, Berkeley, CA, USA,
2010. USENIX Association.

[21] M. Kuzniar, P. Peresini, and D. Kostić. Providing reliable FIB
update acknowledgments in SDN. In Proceedings of the 10th
ACM International on Conference on Emerging Networking
Experiments and Technologies, CoNEXT ’14, pages 415–422,
New York, NY, USA, 2014. ACM.

[22] A. Lazaris, D. Tahara, X. Huang, E. Li, A. Voellmy, Y. R.
Yang, and M. Yu. Tango: Simplifying sdn control with
automatic switch property inference, abstraction, and
optimization. In Proceedings of the 10th ACM International
on Conference on Emerging Networking Experiments and
Technologies, CoNEXT ’14, pages 199–212, New York, NY,
USA, 2014. ACM.

[23] G. Lu, R. Miao, Y. Xiong, and C. Guo. Using cpu as a traffic
co-processing unit in commodity switches. In Proceedings of
the First Workshop on Hot Topics in Software Defined
Networks, HotSDN ’12, pages 31–36, New York, NY, USA,
2012. ACM.

[24] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. OpenFlow:
Enabling innovation in campus networks. SIGCOMM

Computer Communication Review, 38(2):69–74, 2008.
[25] J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, A. R.

Curtis, and S. Banerjee. DevoFlow: Cost-effective flow
management for high performance enterprise networks. In
Proceedings of the 9th ACM SIGCOMM Workshop on Hot
Topics in Networks (HotNets), 2010.

[26] Nping. https://nmap.org/nping.
[27] OfSoftSwitch13. https://github.com/CPqD/ofsoftswitch13.
[28] ONF. Migration use cases and methods.

https://www.opennetworking.org/images/stories/downloads/
sdn-resources/use-cases/Migration-WG-Use-Cases.pdf.

[29] OpenDaylight Platform. https://www.opendaylight.org/.
[30] OpenFlow switch specification—version 1.0.0. Open

Networking Foundation. https://www.opennetworking.org/
images/stories/downloads/sdn-resources/onf-specifications/
openflow/openflow-spec-v1.0.0.pdf.

[31] OpenFlow switch specification—version 1.1.0. Open
Networking Foundation. https://www.opennetworking.org/
images/stories/downloads/sdn-resources/onf-specifications/
openflow/openflow-spec-v1.1.0.pdf.

[32] OpenFlow switch specification—version 1.3.0 (wire protocol
0x04). Open Networking Foundation, 2012.
https://www.opennetworking.org/images/stories/downloads/
sdn-resources/onf-specifications/openflow/
openflow-spec-v1.3.0.pdf.

[33] OpenFlow switch specification—version 1.5.0. Open
Networking Foundation. https://www.opennetworking.org/
images/stories/downloads/sdn-resources/onf-specifications/
openflow/openflow-switch-v1.5.0.noipr.pdf.

[34] M. Reitblatt, N. Foster, J. Rexford, and D. Walker. Consistent
updates for software-defined networks: Change you can
believe in! In Proceedings of ACM HotNets ’11, 2011.

[35] RYU SDN framework. http://osrg.github.io/ryu/.
[36] SDN architecture, issue 1, tr-502. Open Networking

Foundation, June 2014. https://www.opennetworking.org/
images/stories/downloads/sdn-resources/technical-reports/
TR_SDN_ARCH_1.0_06062014.pdf.

[37] A. Sivaraman, C. Kim, R. Krishnamoorthy, A. Dixit, and
M. Budiu. Dc.p4: Programming the forwarding plane of a
data-center switch. In Proceedings of the 1st ACM SIGCOMM
Symposium on Software Defined Networking Research, SOSR
’15, pages 2:1–2:8, New York, NY, USA, 2015. ACM.

[38] A. Wang, Y. Guo, F. Hao, T. Lakshman, and S. Chen. Scotch:
Elastically scaling up sdn control-plane using vswitch based
overlay. In Proceedings of the 10th ACM International on
Conference on Emerging Networking Experiments and
Technologies, CoNEXT ’14, pages 403–414, New York, NY,
USA, 2014. ACM.

[39] M. Yu, J. Rexford, M. J. Freedman, and J. Wang. Scalable
flow-based networking with difane. In Proceedings of the
ACM SIGCOMM 2010 Conference, SIGCOMM ’10, pages
351–362, New York, NY, USA, 2010. ACM.

