State-of-the-art **switching chips** are programmable

- Programmable network packet parsing
- Programmable packet modification instructions
- Programming language e.g., **P4**

Performance
- Terabits/second (i.e., Billions of packets/second)

Limitations
- Simple arithmetic (+,-) /bitwise logic (AND, OR, ...)
- Small memory (10s MBs), small data bus (512B)
- Small number of instructions per packet

A neural network on a network switch?

- Replace heuristic algorithms with specialized versions
 - Packet scheduling
 - Load balancing
 - Queue management

- Computation offloading
 - Pre/Post-processing
 - Informed “next-hop” selection

- Complement lookup tables for (packet) classification
 - White/black lists
 - Multi-stage classification
 - Specialized hash-functions

N2Net

- Regular Neural Networks
 - Multiplications ✗
 - Act. Func., e.g., Sigmoid ✗

- Binary Neural Networks
 - XNOR ✗
 - Popcount, Sign ✗

- With current hardware
 - line rate throughput with 96 (64, 32) neurons, 32b act.
 - 960M forward passes/sec

- Supporting larger networks at line rate:
 - Likely, ~+5% in chip’s cost

Check open positions at:

neclab.eu/jobs