
Is it a SmartNIC or a Key-Value Store? Both!
Giuseppe Siracusano

University of Rome, Tor Vergata
Roberto Bifulco

NEC Laboratories Europe

CCS CONCEPTS
• Networks→ Programming interfaces; In-network processing;

KEYWORDS
SmartNic; eBPF; XDP; Key-Value Store.

ACM Reference format:
Giuseppe Siracusano and Roberto Bifulco. 2017. Is it a SmartNIC or a Key-
Value Store? Both!. In Proceedings of SIGCOMM Posters and Demos ’17, Los
Angeles, CA, USA, August 22–24, 2017, 3 pages.
https://doi.org/10.1145/3123878.3123928

1 INTRODUCTION
In-memory Key-Value stores (KVSs) are important components
of modern web services. Companies such as Facebook, Twitter,
Amazon, etc. deploy such systems at scale, in their datacenters, to
improve services’ quality and scalability.

Given the critical role they play, the performance of KVSs has
been the focus of several works in the last few years. On the one
hand, KVSs have been optimized to take advantage of modern
server’s hardware [6]. This usually included exploiting techniques
such as Kernel by-pass, to reduce the overhead of network pro-
cessing in software, and a number of careful design decisions to
take advantage of multi-core architectures and their cache memo-
ries [7]. On the other hand, purpose-built accelerators have been
proposed in an effort to further scale throughput and reduce re-
sponse time [3].

In this work, we combine the two approaches in a single im-
plementation that runs both on general purpose servers and on
SmartNICs. A SmartNIC couples a hardware accelerator, such as FP-
GAs or Network Processing Units (NPUs), together with a Network
Iterface Card (NIC), in order to help scaling network workloads be-
yond 40Gbps. Unfortunately, they are generally tailored for network
processing, making them a hard fit for different types of workloads.

Our contribution is the design of NICached, a general caching
system for KVSs, which can be supported by upstream Linux Ker-
nels and amenable to be offloaded to different types of SmartNICs.
NICached can handle KVS requests that use a connection-less trans-
port protocol (i.e., we do not currently support TCP), achieving a 6x
improvement in terms of requests per second (RPS) over a produc-
tion ready implementation of memcached, a popular KVS. Contrary
to related work, NICached does not modify the Linux kernel, nor

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCOMM Posters and Demos ’17, August 22–24, 2017, Los Angeles, CA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5057-0/17/08. . . $15.00
https://doi.org/10.1145/3123878.3123928

Figure 1: NICached operations

Figure 2: NICached Finite State Machine. The labels on the
edges show the transitions’ [event] / [actions].

the KVS, and it can take advantage of SmartNICs’ accelerators
without requiring dedicated hardware KVS implementations.

2 NICACHED
Working as a cache, the purpose of NICached is to store the most
recently requested Key/Value (K/V) entries, in order to respond
on behalf of the KVS for get requests. To offload as much process-
ing as possible from the KVS, NICached sits at the earliest packet
processing point of a modern server’s network processing stack.
That is, it is logically deployed at the NIC level. As such, NICached
can intercept a network packet containing a get request before it
is delivered to the server’s network stack. Likewise, NICached can
intercept response messages coming from the KVS in order to cache
at the NIC level a K/V entry.

NICached implements the simple algorithm represented by the
flow chart of Fig. 1. When a network packet containing a KVS
message enters the system, the contained K is extracted, then, de-
pending on the message’s type, different actions are taken. If the
packet is a get, a lookup in the cache (e.g., a hash table) retrieves
the corresponding K/V entry to immediately generate a response
message in reply, without delivering the packet to the server. If
the lookup could not retrieve any entry, i.e., in presence of a cache
miss, the message is instead delivered to the server so that the KVS
can process it. In such a case, the KVS will eventually provide a
response containing the K/V entry. NICached reads this response
to update the cache with such entry, before delivering the message
to the network. If the message is a set, NICached still checks the
local cache. In case of a miss, it simply delivers the message to

https://doi.org/10.1145/3123878.3123928
https://doi.org/10.1145/3123878.3123928

SIGCOMM Posters and Demos ’17, August 22–24, 2017, Los Angeles, CA, USA Giuseppe Siracusano and Roberto Bifulco

the server. In fact, a miss shows that the corresponding K was not
recently requested. On the contrary, if there is a K/V entry, then
the cached value should be updated with the newly provided one.
In effect, the cached V is outdated by the new set request, which
contains a new value, sayV ′. For correctness of the system, V must
be replaced withV ′ during the processing of the set, otherwise any
following get for such value would be answered by NICached with
the outdated V.
Implementation The implementation of NICached builds on a
simple observation: the algorithm of Fig. 1 can be easily expressed
using a Finite State Machine (FSM), as shown in Fig. 2. Since re-
cent proposals in the area of programmable network data planes
suggest an FSM abstraction as programming model [2, 8], we ex-
plored the possibility to implement NICached using a similar ap-
proach. In particular, we describe the OpenState [2] data plane
using eBPF [10](extended Berkeley Packet Filter). eBPF is a Linux’s
technology that allows a programmer to specify limited but safe
network processing directives that can be injected directly in the
kernel. Also, recently the eXpress Data Path (XDP) hook has been
introduced [11]. XDP is an interface supported by NIC vendors that
allows a programmer to inject eBPF programs at lower points in
the network stack, e.g., directly in the NIC’s driver. Therefore, we
use XDP as execution point for the OpenState-eBPF program.

One important implementation detail is the realization of the
cache for K/V entries. Briefly, in OpenState a hash-table stores the
state associated with a particular network flow. A programmer
specifies a definition for a network flow by setting a lookup-key
extractor. The extractor combines packet header’s fields in a hash
used as key for the lookup in the hash-table. We configure the
extractor to use the K contained in the KVS messages to lookup in
the hash-table. Consequently, we store Vs in the hash-table as if
they were flow states.
Software micro-benchmarksWe tested NICached on a testbed
composed by two machines with Intel Xeon E5-1630 CPUs (4 cores
@3.70GHz), connected back-to-back with two Mellanox ConnectX-
3 (40Gbps) Ethernet cards. The NICached eBPF program uses the
XDP_TX action to transmit packets. Using the XDP benchmark
tool [4], we measured the baseline performance of our NIC, when
using XDP_TX to forward packets. In our tests we achieved 6.9
million packets per second (Mpps) with a single CPU’s core.

Having established our baseline, we performed a preliminary
evaluation of our implementation comparing it with a production-
ready memcached deployment on the same server. In particular, we
compared the throughput in terms of RPS, usingminimum sized K/V
entries. That is, we used a cache composed of 3.2 million of entries,
with key and value of 8 bytes. We chose to use small entries because
they represent the critical workload for KVS [1, 6], and they ensure
that the available network bandwidth is not the bottleneck. Notice
that in such setting, handling a memcached request corresponds to
the forwarding of a single network packet.

Under these conditions, and using the CPU’s four cores, mem-
cached is able to handle 0.9MRPS. In contrast, our NICached pro-
totype can process 5.4MRPS using just a single core. The 6x im-
provement factor is mainly given by our ability to avoid most of
the operating system’s overheads.

Figure 3: NICached deployments options: OpenState "na-
tive" on FPGA; eBPF, for Linux or NPU-based SmartNIC; P4
for P4-based NICs.

SmartNICs While the testing of our implementation on actual
SmartNICs is part of our futurework, we are confident that NICached
can be already deployed on SmartNICs.

We motivate our statement as follows. First, we used OpenState
to describe NICached operations, and OpenState has implementa-
tions available for the NetFPGA, a SmartNIC that uses an FPGA
as hardware accelerator. Second, OpenState can be also described
with P4, making it potentially suitable for implementation on top of
other P4 targets [9]. Finally, we described NICached and OpenState
using eBPF. Several SmartNICs based on NPUs already (or plan to)
support eBPF programs [5]. These options are summarized in Fig. 3

In conclusion, NICached provides an example of transparent
acceleration for KVSs, using a single implementation that can run
both in the Linux kernel and, potentially, on a heterogeneous set of
SmartNICs. While the actual potential of this approach has yet to
be demonstrated, with several issues to be tackled (e.g., cache size
and consistency), we believe this is a promising area of research
that could help in exploiting the heterogenous hardware resources
of future servers.

3 ACKNOWLEDGMENTS
This work has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement
No. 671648 ("VirtuWind"). This paper reflects only the authors’
views and the European Commission is not responsible for any use
that may be made of the information it contains.

REFERENCES
[1] Berk Atikoglu et al. 2012. Workload analysis of a large-scale key-value store. In

ACM SIGMETRICS Performance Eval. Rev.
[2] Giuseppe Bianchi et al. 2014. OpenState: programming platform- independent

stateful openflow applications inside the switch. ACM SIGCOMM Computer
Communication Review (2014).

Is it a SmartNIC or a Key-Value Store? Both! SIGCOMM Posters and Demos ’17, August 22–24, 2017, Los Angeles, CA, USA

[3] Michaela Blott et al. 2013. Achieving 10Gbps Line-rate Key-value Stores with
FPGAs.. In HotCloud.

[4] Jesper Dangaard Brouer. 2017. XDP benchmark. https://github.com/netoptimizer/
prototype-kernel/. (2017).

[5] Jakub Kicinski and Nicolaas Viljoen. 2016. eBPF Offload to Hardware: cls_bpf
and XDP. NetDev 1.2 (2016).

[6] Sheng Li et al. 2015. Architecting to achieve a billion requests per second through-
put on a single key-value store server platform. In ACM SIGARCH Computer
Architecture News. ACM.

[7] Hyeontaek Lim et al. 2014. MICA: A holistic approach to fast in-memory key-
value storage. management 15, 32 (2014), 36.

[8] Masoud Moshref et al. 2014. Flow-level state transition as a new switch primitive
for SDN. In Proceedings of the third workshop on Hot topics in software defined
networking. ACM.

[9] OpenstateP4. 2015. http://github.com/OpenState-SDN/openstate.p4. (2015).
[10] Alexei Starovoitov. 2014. eBPF. https://www.kernel.org/doc/Documentation/

networking/filter.txt. (2014).
[11] Alexei Starovoitov and Tom Herbert. 2016. eXpress Data Path. https://

github.com/iovisor/bpf-docs/blob/master/ExpressDataPath.pdf. (2016).

https://github.com/netoptimizer/prototype-kernel/
https://github.com/netoptimizer/prototype-kernel/
http://github.com/OpenState-SDN/openstate.p4
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://github.com/iovisor/bpf-docs/blob/master/Express_Data_Path.pdf
https://github.com/iovisor/bpf-docs/blob/master/Express_Data_Path.pdf

	1 Introduction
	2 NICached
	3 Acknowledgments
	References

