
TCP Proxy Bypass: all the gain with no pain!
Giuseppe Siracusano

University of Rome, Tor Vergata
Roberto Bifulco

NEC Laboratories Europe
Stefano Salsano

University of Rome, Tor Vergata

CCS CONCEPTS
• Networks → Network protocols; Transport protocols; Applica-
tion layer protocols;Middle boxes / network appliances;

KEYWORDS
TCP proxy; proxy offloading; SDN; NFV.
ACM Reference format:
Giuseppe Siracusano, Roberto Bifulco, and Stefano Salsano. 2017. TCP Proxy
Bypass: all the gain with no pain! . In Proceedings of SIGCOMM Posters and
Demo ’17, Los Angeles, CA, USA , August 22–24, 2017, 3 pages.
https://doi.org/10.1145/3123878.3123916

1 INTRODUCTION
TCP proxies are widely deployed in modern networks [9], and,
sitting on the network connections’ data path, their efficiency is
critical to systems’ cost and performance.

Regardless of its specific function, a TCP proxy typically per-
forms a set of common operations. It terminates a client TCP connec-
tion, reads/modifies the application-layer header, and then opens
a new TCP connection to a selected back-end server. The details
of this process finally determine the actual implemented function.
For instance, Level 7 load balancers (L7LBs) distribute load across
back-end servers. This is the case of HAProxy1, a L7LB used by
many well known services (e.g., Alibaba, Imgur, Reddit, Stack Over-
flow, Tumblr, Vimeo). Similarly, Redirection Proxies are used to
redirect traffic based on an independent DNS resolution of the Host
field in the HTTP request. Yet another example are protocol opti-
mization proxies used in cellular networks (e.g., AT&T, T-Mobile,
Verizon, Sprint) to delay the initial TCP handshake to a server, until
receiving an HTTP request [9]).

In many cases, the proxy is only required during the initial
phases of a network connection, becoming just a relay during the
later stages, until the connection is finally closed. For example,
TCP proxies reading the HTTP request header may require to
access only the first few packets of a connection. In fact, many TCP
connections carry just a single HTTP request [1]. Furthermore,
with the increase of TLS encrypted traffic, only the first few frames
of a TCP connection are not encrypted and can be actually accessed
by the proxy [6].

1http://www.haproxy.org/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCOMM Posters and Demo ’17, August 22–24, 2017, Los Angeles, CA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5057-0/17/08. . . $15.00
https://doi.org/10.1145/3123878.3123916

Figure 1: TCP proxy bypass

In this paper, we focus on these cases and try to answer the
following question: can established connections be offloaded from the
TCP proxy? Our goal is to save precious resources by transparently
removing the TCP proxy from the data path, when the proxy’s op-
erations are limited to relaying packets. Notice we do not consider
proxies performing protocol optimization, such as WAN acceler-
ators. These proxies modify the TCP protocol behavior, e.g., the
congestion control algorithm, and/or modify the data frames, e.g.,
performing compression, making them unsuitable for the offload.

Performing a TCP connection offload implies fulfilling two re-
quirements. First, the offload should be performed without modi-
fying the end-hosts of a connection, i.e., the client and the server.
Second, the offload should not negatively affect the connection
performance. Indeed, the main issue is in the need to join together
two TCP connections with their specific per-connection states.
To this end, our work provides a twofold contribution. First, we
identify the minimum set of operations required to implement the
joining of two TCP connections fulfilling the above requirements.
Then, we show that such operations can be easily supported by
already deployed infrastructure elements, such as P4 programmable
switches [2], as shown in Fig.1. We implemented a proof-of-concept
of our technique, named TCP proxy bypass, using PISCES [7], a
P4 programmable software switch based on OVS, and extending
Miniproxy [8], a unikernel implementation of a TCP proxy.

2 TCP PROXY BYPASS
TCP Proxy Bypass is implemented using a modified TCP proxy and
a programmable software switch. The proxy selects the TCP con-
nections to be offloaded, and performs the corresponding offloading
operations. The switch, previously used to forward incoming/out-
going traffic to/from the proxy, performs the packet forwarding for
offloaded connections.

When the proxy decides that a connection has to be offloaded, it
performs three operations. First, the proxy defines network address
and port translation rules to rewrite the client-side and server-side
connection’s packet headers. The operation is very similar to a
NAPT (Network address and port translation) and is required to
remove the proxy from the path. Then, the proxy waits until there

https://doi.org/10.1145/3123878.3123916
https://doi.org/10.1145/3123878.3123916

SIGCOMM Posters and Demo ’17, August 22–24, 2017, Los Angeles, CA, USA Giuseppe Siracusano, Roberto Bifulco, and Stefano Salsano

(a) Cubic (b) BBR (ProbeRTT) (c) BBR (ProbeBW)

Figure 2: Effects of delay injection on TCP congestion control

are no in-flights packets on both the client- and server-side connec-
tions2. In fact, once a connection is offloaded from the proxy, any
potential re-transmissions cannot be handled anymore. In effect, the
proxymonitors the status of the receive and transmission buffers for
both the client- and server-side connections. When all the buffers
are empty, the offload is finally performed. In this stage, the proxy
computes an offset between the two connections sequence and ACK
numbers. Depending on the packets direction, adding or subtracting
such offset from the corresponding packet’s header fields ensures
the client and the server will not find a sequence number/ACK num-
ber mismatch, once the proxy is removed. The offload is completed
by installing a pair of forwarding entries, one per direction, in a
P4 programmable switch. The entries perform both the NAPT and
offset add/sub operations.
TCP options TCP Proxy Bypass requires the proxy to negotiate the
same set of options on both the client- and server-side connections.
In practice, a proxy could cache the set of options supported by
a server and then negotiate the same set of options with the next
client asking for a connection to that server. Note that for some
TCP options also the value of the option should be propagated from
the proxy to the client, e.g., the window scaling value.
Impact on congestion control Joining the client- and server-side
connections may impact the TCP congestion control loop. Most
notably, the removal of the proxy corresponds to a sudden variation
of the perceived end-to-end round-trip time (RTT). We evaluated
the effect on Cubic [5] and BBR [3] algorithms, running a TCP
flow for 60s over a 100Mbps link. During the connection, we add
additional delay on the link, summing up to a total RTT value
of 100ms for all the cases. With Cubic (Fig.2a), an RTT increase
bigger than 20ms causes a sudden throughput drop (at T=30s). The
effect is due to expiring re-trasmission timeouts, whose value is
set according to the measured RTT. In Fig.2b and Fig.2c we see
the BBR test results. Recall that BBR detects congestion estimating
the RTT and the bottleneck bandwidth (BW). Briefly, it uses two
different states, ProbeBW and ProbeRTT. During ProbeRTT, BBR
reduces the in-flight packets to drain the queues on the end-to-end
path, and estimates the RTT. The ProbeRTT state lasts for 200ms
and is triggered periodically (every 10s), unless there are silence or
low rate periods. Fig.2b shows the throughput when the delay is
added a during the ProbeRTT state (T=30), while Fig.2c shows the
throughput when the delay is added a during the ProbeBW state
(T=25). In both cases a RTT increase smaller than 50ms does not
affect the connection throughput. Larger variations, e.g., 100ms,
2In case of web traffic, this is easily the case since the communications often have
silence periods [4]).

introduce instead a throughput drop, as the connection reenters
the Startup phase, or in the case of Fig.2c it enters in Drain state
and then performs the Startup.

To avoid throughput drops, we ensure the proxy introduces a
gradual synthetic delay, e.g., in steps of 20ms, before performing
the connection offload.
ImplementationWe implemented TCP Proxy Bypass extending
a unikernel operating system [8] to expose additional information
at the socket level, e.g., TCP sequence numbers, and to configure
the programmable switch. We used PISCES [7] to implement a P4
programmable switch. A P4 program describes a switch pipeline
that can read and modify the TCP header fields (e.g., TCP sequence
numbers). While we could have used P4 also to describe the re-
quired sequence number modification action, we used it only to
parse the TCP header fields. For performance reasons the sequence
number translation is implemented as a custom action directly in-
side the OpenvSwitch code. We believe the poor performance to be
a limitation of the prototypical version of PISCES we used for the
test.
System loadWe tested the system using a test deployment similar
to what we would expect to be a typical modern proxy deployment
scenario. That is, we run the proxy as a virtual machine, using
Xen 4.4 and PISCES as software switch, on a server equipped with
an Intel Xeon Ivy Bridge CPU@3.4GHz, 16GB RAM, with a dual
port Intel x450 10Gb NIC. A similar server, connected back-to-
back, generates 10Gbps line rate traffic using 100 parallel TCP
connections.

We assign one core to PISCES and one to the proxy, achieving
10Gbps line rate. Then, we apply TCP Proxy Bypass to the 100
connections. Also in this case the line rate is easily reached, but
this time using just PISCES running on a single core to forward
the traffic. With all the connections offloaded, the proxy’s CPU
core stays idle, while the switch resource consumption does not
increase. More specifically, the switch is actually experiencing lower
load since it just forwards packets between the server’s physical
interfaces, instead of performing the additional forwarding step
required to deliver packets to the proxy, as it is the case when the
connections are not offloaded.

3 ACKNOWLEDGMENTS
This paper has received funding from the EuropeanUnion’s Horizon
2020 research and innovation programme under grant agreement
No. 671566 ("Superfluidity"). This paper reflects only the authors’
views and the European Commission is not responsible for any use
that may be made of the information it contains.

TCP Proxy Bypass: all the gain with no pain! SIGCOMM Posters and Demo ’17, August 22–24, 2017, Los Angeles, CA, USA

REFERENCES
[1] Mohammad Al-Fares et al. 2011. Overclocking the Yahoo!: CDN for Faster

Web Page Loads (IMC ’11). ACM, New York, NY, USA. https://doi.org/10.1145/
2068816.2068869

[2] Pat Bosshart et al. 2014. P4: Programming protocol-independent packet proces-
sors. ACM SIGCOMM CCR 44, 3 (2014).

[3] Neal Cardwell et al. 2016. BBR: Congestion-Based Congestion Control. Queue
14, 5 (2016), 50.

[4] Phillipa Gill, Martin Arlitt, Zongpeng Li, and Anirban Mahanti. 2008. Character-
izing user sessions on youtube. In Electronic Imaging.

[5] Sangtae Ha et al. 2008. CUBIC: a new TCP-friendly high-speed TCP variant.
ACM SIGOPS Operating Systems Review 42, 5 (2008).

[6] David Naylor et al. 2014. The cost of the S in HTTPS. In Proceedings of the
10th ACM International on Conference on emerging Networking Experiments and
Technologies. ACM.

[7] Muhammad Shahbaz et al. 2016. Pisces: A programmable, protocol- independent
software switch. In ACM SIGCOMM.

[8] Giuseppe Siracusano et al. 2016. On the Fly TCP Acceleration with Miniproxy.
In ACM SIGCOMM HotMiddlebox.

[9] Xing Xu et al. 2015. Investigating transparent web proxies in cellular networks.
In PAM. Springer.

https://doi.org/10.1145/2068816.2068869
https://doi.org/10.1145/2068816.2068869

	1 Introduction
	2 TCP Proxy Bypass
	3 Acknowledgments
	References

